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Synopsis 

This thesis embodies a detailed investigation of two families of paraconsistent logics 

developed by the Brazilian logician Newton C.A. da Costa and his collaborators. These two 

families - the J-systems and the C-systems - are among the most well-known contributions of 

Brazilian logicians to the paraconsistent logic programme, and they also exhibit most clearly 

what has come to be regarded as the distinguishing feature of the Brazilian approach to 

paraconsistency. 

This approach is enshrined rn da Costa 's two conditions for paraconsistent logics. The 

first uncontroversially requires that arbitrary conclusions not be deducible from inconsistent 

premisses, and the second requires that such logics approximate classical logic as far as is 

com patible with the satisfaction of the first condition. It is this second condition which 

distinguishes the Brazilian approach, and it is the major task of this thesis both to assess 

whether the J-systems and C-systems satisfy these conditions and also to critically examine 

the conditions, particularly the second, in the process. 

In Chapter One, it is shown that the positive theorems of J 1, the weakest of the J­

systems, are exactly those of positive intuitionistic logic, while t he positive t heorems of the 

remaining J-systems are exactly those of positive classical logic. 

In Chapter Two, it is noted that the stronger J-systems either explicitly or substantively 

fail to satisfy da Costa 's first condition, leaving only J 1 for further consideration. However, 

the fact that J 1 does not enjoy SE, the property of intersubstitutivity of provable equivalents, 

indicates that this system does not adequately meet the second condition. Attempts to 

extend J 1 so as to secure SE are unsuccessful, in that its satisfaction of the first condition is 

th ereby forfeited. 

In Chapter Three, attention is turned to subsystems of J 1, in an at t empt to find J­

systems which both enjoy SE and satisfy the paraconsistency conditions. Axiomatic and 

Gentzen-style equivalents of most of the subsystems investigated are provided. 

In Chapter Four, it is shown that the subsystems of J 
1 

defined in Chapter Three do not 

enjoy SE. However, t he attempts to extend them so as to secure this property do not 

compromise their satisfaction of the first condi t ion. Their satisfaction of the second 

cond ition , however, is slightly tarnished by the existence of axiomatic counterparts which 
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app rox imate classical logic more closely. These latter systems form t he bridge between t he 

J-systems studied in the first four chapters and the C-systems studied in the last two. 

In Chapter Five, it is shown that the C-systems also fail to enJoy SE, and that the 

xt ns1ons necessary to secure this property collapse all but the base system C into classical 
w 

logic. 

In Chapter Six, two variations to the C-systems are considered. The first, which 

invo lves the least drastic revision, is only partially successful in producing C-systems which 

b th enjoy SE and satisfy the paraconsistency conditions. The second variation , which 

inv Ives replacing C by alternative base systems from among the axiomatic systems of 
w 

hapter Four , produces only a few systems with the desired properties , the remainder 

coll a psing into either classical logic or other systems which do not satisfy the first condition. 

The final conclusion is that still weaker base systems should be investigated, indicating that a 

significant departure from da Costa's second condition is warranted. 
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Chapter One: The Positive Parts of the J-Systems 

1. THE J-SYSTEMS 

The J-systems of Arruda and da Costa (introduced and investigated in [4]) have as 

primi t ive connect ives -+ , :J , /\ , &, V and I. Formulas involving only propositional variables 

p,q,r , ... ,pl'p2, ... and the connectives :J , &, V and I will be denoted by t he let ters A,B, C, ... 

, A1, A2, ... , and the set of such formulas will be denoted by l. The let t ers 6, I', ... will be 

reserved for formulas of the form A1 /\ ... /\ An, where { A1, ... , An} is a (possibly empty) 

subset of l. The connective -+ can occur only in formulas of the form I'-+ A; and if the set of 

!-formulas occurring in I' is empty , this is abbreviated as -+A. The set of formulas of the 

form I' -+ A will be denoted by K. 

Evidently, a natural analogy holds between the connectives /\ and -+ of the J-systems 

and , respectively , the comma and arrow ( or turnstile) of Gentzen-sty le formulations of more 

familiar logics. Following this analogy, we· henceforth express 6 , I', etc. simply as sequences 

A1, A2, ... , An (in conformity with the notation of [4] and [7]), and refer to the members of)( 

as sequents. Further, if I'-+ A is a derivable sequent in a J-system, we will say that A is 

der·ivable from I'; and if both A -+ B and B -+ A are derivable sequents , we will say t hat A 

and B are ·i"nterderivable or provably equ£valent. Following [4], we adopt the shorthand A +-+ 

B to represent t he (metalogical) conjunction of sequents A -+ B and B -+ A, and say that A 

+-+- Bis derivable when both of these sequents are. F inally, any formula A off, such that -+A 

is a derivable sequent of a J-system will be called a theorem of that system. 

The postulates ( axiom schemata and rules of inference) of J 1 are as follow: 
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The postulates of J
2 

are those of J 1 together with the following: 

1
5

) -+(A::) B) :J ((A :J-, B)::) 1 A) 

The postulates of J 
3 

are those of J 2 together with the following: 

The postulates of J 5 are those of J 2 together with the following: 

Li A-+B 

Finally J
4 

has all of the postulates of J
2

, t ogether with , 11), which is just -+7) with Ll 

empty. 
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The relations of containment holding between these systems are as set out below, with 

weaker systems placed below stronger ones (see Theorems 11 and 21 of [4]) . 

2. THEOREMS AND SEQUENTS 

Notably absent from the postulates of the J-systems is the rule of modus ponens for ::J. 

Consequently, there are sequents I'--+ A ::J B derivable in these systems such that I', A -+ B is 

not derivable. In particular, this holds for empty I': there are theorems A ::J B of the J-systems 

such that A --+ B is not derivable. 

The absence of modus ponens is meant to ensure that the systems are paraconsistent, 

1.e. that they can support inconsistent theories without collapse into triviality. Specifically, 

Arruda and da Costa construct on the basis of each J . a set theory ZF . in which the postulate 
'L 'l. 

of separation occurs without the restrictions which are pl;ced on it in Zermelo-Fraenkel set 

theory in order to guard against paradox. The guard against paradox -- or more accurately , 

the guard against triviality in the presence of paradox -- is built into the theories ZF i not at 

the properly set-theoretical but already at the propositional level, i.e. in the postulat es of the 

J-systems themselves. 

This strategy is at least partially successful, for even though the sequent -.(A & 1 A) ::J 

B is derivable in each Ji(2 ~ £ ~ 5), by Theorem 4 of [4], its paraconsistency-defeating 

correlate A, 1A --+ B is derivable only in J ... , by Theorems 3, 5, 7, 10 and 18. Of course, it is 
~ 
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pr cisely the absence of modus ponens which is responsible for the impossibility of deriving 

th latter from the former in the systems Ji(2 ~ i ~ 4). 

However, the absence of modus ponens from the J-systems also complicates the task of 

relating the positive parts of these systems to those of more familiar propositional logics such 

as classical and intuitionistic logic. For consider the sequents -+(A & (A:) B)) :) Band A 

&( :) B) -+ B. The first is derivable in all of the J-systems, by Theorem 2 of [l ], while the 

cond is derivable in none, by Theorems 7 and 19. However , both sequents are derivable in 

the "absolute propositional system" LA of [8], which is the weakest of Curry's hierarchy of 

s quent-based systems, relatively strong members of which are intuitionistic logic (LJ) and 

classical logic (LK). Evidently, then, it is not possible to demonstrate any coincidence 

between the positive sequents derivable in the J-systems and those derivable in the more 

familiar sequent-based systems; it is only with respect to positive theorems that such 

coincidence can be established. 

3. POSITIVE PARTS 

Definition 1. A formula of l is positive just in case it does not contain the connective 1. The 

set of positive !-formulas is denoted by t,+. 

Definition 2. A sequent of K is positive just in case all of the !-formulas which occur in it are 

positive. The set of positive sequents is denoted by ~-

Definition 3. For each Ji, the posit£ve subsystem of Ji, denoted Ji+ , is that system generated 

by precisely those instances of the postulates of J . which do not involve the connective 1. 
t . 

Definition 4. J. is a conservative extens£on of its positive subsystem J .+ just in case every 
t t 

positive sequent derivable in J. is also derivable in J .+. 
1 t 

We note that any conservative extension result for a system J . will provide useful 
t 

information about the positive theorems of J .. For if J. is a conservative extension of J .+, 
t t . 1 

then in particular, every positive sequent of the form -+ A which is derivable in J i is also 

derivable in J .+, i.e. the positive theorems of J. are precisely the theorems of J .+. 
1 t t 

• 



We begin our investigation of the positive parts of the J-systems by considering their 

positi ve subsystems. 

4. POSITIVE SUBSYSTEMS 

Th orem 1. All of the J-systems share a common positive subsystem, i.e. J 1 + = Ji+ (1 ~ i ~ 

.. ) . 

Proof: This is evident from the fact that all of the postulates which are added to those of J 1 in 

th construction of the remaining J-systems involve negation explicitly; hence there are no 

p sitive instances of these postulates to be added to those of J 1 + in t he elaboration of J 2 + to 

Thus, our work in this section is reduced by the fact that we have only one positive 

su bsystem to investigate. It is minimised by the fact that it is established 1n [7] precisely 

what the theorems of that subsystem are. We quote this result without proof. 

Theorem 2. The theorems of J 1 + are precisely those of positive intuitionistic logic. 

5. THE POSITIVE THEOREMS OF J 1 

Theorem 3. J 1 is a conservative extension of J 
1 

+ 

Proof: We need to show that every positive sequent derivable in J
1 

has a derivation in J
1
+. 

To this end, we define the function p: K u .C -+ r u .c+ as follows. 

p(~ A) 

p(A VB) 

p(A & B) 

p(A :) B) 

p(11A) 

p(A) 

~ p(A); 

p(A) V p(B); 

p(A) & p(B); 

p(A) :) p(B); 

p(A); 

A if A€ "+. 
' J., ' 

q :) q (where q is a fixed propositional variable 
of C) if A is of the form 1B and B is not of 
the form 1C. 
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Let I'-+ A be any sequent derivable in J1. We show by induction on the length n of 

d rivation of I'-+ A that p( I'-+ A) is derivable in J 1 + . 

ase case ( n = I). In this case I' -+ A is an axiom of J 1. For all such axioms except the 

""1- postulates, it is tr ivial to verify that their p-translates are derivable in J 1 + (indeed , they 

are J
1
+-postulates). For example, the p-translate of :J 2) is just (p(A) :J p(B)) & (p(A) :J 

(p(B) :J p(C))) -+ p(A) :J p(C), which is a positive instance of :J 2) . The negation postulates 

re also fairly straightforward. Postulates 1 1) and 1 2) both translate as p(A) -+ p(A), which 

i jus t a positive instance of -+1). "13) becomes -+ q :J q whatever A is, which is derivable 

from the J1 + -postulate q-+ q by one step of :J 1). Finally, postulate "14) translates as-+ p(A) 

V p("lA), but evidently one of the disjuncts must be q :J q, and so the whole disjunction has 

an easy derivation in J 1 + . This concludes the base case. 

Inductive step ( n = k for some k> l; inductive hypothesis: if I' -+ A has a J 1-derivation of 

I ngth less than k, p(I'-+ A) has a derivation in J1 +). Again, this is straightforward: the 

equent in question must have been derived by application of a rule. We consider the case of 

-+5); the other rules can be treated similarly. In this case, the sequent with derivation of 

ngth k is Ll, I'-+ A, and is derived from ..d -+ C and C, I'-+ A by -+5). Let 6. and I' be the 

quences D1, ... , Dm and B1, ... , Bn respectively. Then p(6. -+ C) and p(C, I'-+ A) are the 

equents p(D 1), ... , p(Dm) -+. p(C) and p(C) , p(B1), ... , p(Bn) -+ p(A) respectively. But on 

induct ive hypothesis, these latter have derivations in J 1 +, and hence, by one step of -+ 5), so 

does p(D 1), ... , p(Dm) , p(B1), ... , p(Bn)-+ p(A). But this is just p(6., I'-+ A). 

We have established that the p-translate of any sequent derivable in J 
1 

is derivable in 

J 1 + To complete the proof of Theorem 3, it suffices simply to note that if I' -+ A is already 

positive (i .e. a member of _K"+), then p(I' -+ A) is just I' -+ A itself, and hence I'-+ A is 

derivable in J1 + if derivable in J
1

. 

Corollary. The positive theorems of J 1 are precisely t he t heorems of J 1 +, which are precisely 

the theorems of positive intuitionistic logic. 
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6 . THE POSITIVE THEOREMS OF J2 TO J5 

Unfortunately, the conservative extension method used to determine the positive 

h orems of J 
1 

cannot be applied to the remaining J-systems. 

Theorem 4. None of the systems Ji(2 ~ i ~ 5) is a conservative extension of its positive 

ubsys tem Ji+ . 

Proof: In theorem 4 of [4], it is noted that the intuitionistically underivable sequent -+ ( (A :) 

) :) A) :) A is derivable in J2 (and hence, also in J3, J 4 and J 5). However, this cannot be 

rivable in \ +(2 ~ i ~ 5) by Theorems 1 and 2 of Section 4. 

To determine the positive theorems of J 2 to J 5, then, other methods will have to be 

employed. We note that there is a result in [4] which implicitly determines the positive 

theorems of J3• It is Theorem 6, which states that all theorems of classical (propositional) 

logic are theorems of J 3. It is easy to verify that all of the postulates of all of the J-systems 

are classically derivable in a sequent-based formulation such as LK of [8]; hence, the converse 

also holds. The theorems of J 3, then, are precisely the theorems of classical logic; and in 

particular, the positive theorems of J 3 are precisely the positive theorems of classical logic. 

These in turn are precisely the theorems of positive classical logic. 

Again, the above argument cannot be employed to determine the positive theorems of 

J 2, J 4 and J 5, for unlike J 3, these systems do not contain all of the theorems of classical logic, 

by Theorem 19 of [4]. Nonetheless, it can be established by means of a general but fairly 

Jmplicated proof that the positive theorems of these systems are, like those of J 3, precisely 

he theorems of positive classical logic. Because this proof depends on numerous technical 

preliminaries, we preface its presentation with an informal sketch of the strategy t o be 

deployed. 

The object of the proof is to show that the positive theorems of Ji(2 ~ ,i ~ 5) are 

precisely those of positive::: classical logic. This is achieved not directly , but through t he use of 

a transformation procedure which has two component functions. The first component , the 

u-function, simply reorders and/ or reassociates disjunctions, thereby transforming formulas of 
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r..+ into so-called u-normal form. Some initial lemmas are used to establish that every 

form ula of f.. is provably equivalent, both in t he J-systems and classically , to its u-normal 

form. The job of the u-function is simply to ensure that application of the second component, 

the t-function , terminates in the desired way. The joint application of t he two functions 

transforms formulas of t,+ into so-called t-normal form. Again , several lemmas are used to 

stablish that every formula of t,+ is provably equivalent , both in J/2 ~ i ~ 5) and 

lassically, to its t-normal form. The final stage of the proof consists in showing that the 

t-normal positive theorems of Ji(2 ~ i ~ 5) correspond precisely to the t-normal theorems of 

p sitive classical logic. 

We now turn to the proof in detail, interjecting explanatory remarks where appropriate. 

We begin by adducing some of the more general properties of the J-systems. 

As observed earlier, all of the postulates of the J-systerns are classically derivable. We 

therefore have the following. 

L mma 1. Every sequent drivable in Ji(l ~ i ~ 5) is also classically derivable. In particular, 

very t heorem of J/1 ~ 1.· ~ 5) is also a classical theorem, and any formulas provably 

quiv alent in J i (l ~ i ~ 5) are also provably equivalent classically. 

L mma 2. The systems Ji(l ~ i ~ 5) enJoy SE+ , the property of intersubstitutivity of 

provable equivalents in negation-free contexts, i.e. where I'-.. A is a derivable sequent and B 

is a subformula of some members(s) of I' and/ or of A not occuring within t he scope of any , , 

then the sequent obtained by substituting any formula C which is provably equivalent to B 

for any or all occurences of B in I'-.. A is also derivable. 

Proof: It is easy t o verify t hat in Ji(l ~ i ~ 5) , the following are derivable rules: 

B~c B~c 
B*D~C*D D*B ~ D*C ' 

where * stands for any of t he connectives &, V or :J . Given these rules, it is st raightforward to 

construct an inductive argument showing t hat the J-systems enjoy SE+ . 

Lemma 3. In J i (l ~ i ~ 5) , the following are derivable: 



(B v C) +-+ (C V B) 

Proof: By Theorem 2 of [4]. 
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(B V (CV D)) +-+ ((B V C) VD). 

D finition 5. A formula oft,+ is disjunctive if it is of the form B V C, conjunct£ve if it is of 

th fo rm B & C, and implicative if it is of the form B :) C. 

L mma 4. Any finite disjunction of non-disjunctive formulas of t,+ can, without loss of 

quiv alence in J i(l ~ i ~ 5), be reordered and/ or reassociated. 

Pr of: This follows by a straightforward inductive argument from Lemmas 2 and 3. 

We now introduce the first component of the transformation procedure. 

D finition 6. The function u: t,+ ~ t,+ reorders and/ or reassociates ( as necessary) any finite 

disjunction A of non-disjunctive formulas A 1, ... ,An so that u(A) = A1 V (A2 V ... V (An-l V 

) ... ) where, for distinct A. and A ., A. occurs to the left of A . in u (A) just in case A. occurs 
n i J i J i 

b fore A . in some given total ordering of the non-disjunctive formulas of t,+ satisfying the 
J 

fo llowing conditions: 

(i) every implicative formula occurs before every conjunctive formula in the ordering; and 

(ii) every conjunctive formula occurs before every propositional variable in the ordering. 

For completeness, where A is a non-disjunctive formula of t,+ , u(A) is defined to be 

. For any formula A oft,+, u(A) is referred to as the u-normal form of A. 

L mma 5. Let A be a formula of t,+. Then both 1n Ji(l ~ i ~ 5) and classically, A 1s 

provably equivalent to its u-normal form u(A). 

Proof: If A is disjunctive, then we have A +-+ u(A) in \-(1 ~ ,,: ~ 5) by Lemma 4. If A is 

non-disjunctive, then u(A) = A, and we have A +-+ u(A) by postulate ~ 1). In general, then , 

is provably equivalent to u(A) in Ji(l ~ i ~ 5), and hence also classically by Lemma 1. 

The following technical obser·; ation will facilitate later proofs. 

Lemma 6. Let A be a formula oft,+ . Then A and u(A) have the same number of connectives. 
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Proof: This is obvious from t he definition of u(A), since the number of connectives in a 

formula is preserved under the operations of reordering and reassociation of disjuncts. 

We now introduce the second component of the transformation procedure. 

D finition 7. The function t: t,+ -. t,+ is defined as follows: 

t(A) = A if A is not of the form B & C or (B :J C) V D or (B & C) V D; 

t(B & C) = t(u(B)) & t(u(C)); 

t(( B :J C) V D) = B :J (C V D); 

t((B & C) VD)= t(u(B VD)) & t(u(C VD)). 

For any formula oft,+, the formula t(u(A)) is referred to as the t-normal form of A. 

We can describe in less formal terms the way in which a positive formula A 1s 

transformed by the joint application of the t- and u-functions. In the interesting case, 1n 

which A is a positive formula containing all of the connectives &, V and :J , the transformation 

"drives inwards" any occurrences of V not within the scope of any occurrence of :J, through 

o currences of & if necessary, and eventually through some occurrence of :J if possible. The 

contribution of the u-function is to locate implicative disjuncts, or failing this, conjunctive 

disjuncts, and push them to the left so that the t-function does in fact drive occurrences of V 

inwards in t he desired direction. In general , the endproduct t( u(A)) has no occurrences of & 

within the scope of any occurrence of V but not within the scope of some occurrence of :J. In 

th case in which A is a theorem of positive classical logic, it will emerge that t( u( A)) is either 

implicative or a finite conjunction of implicative formulas. 

To establish the relationship between positive formulas and their t-normal forms, 

s veral lemmas are again required. 

L mma 7. In Ji(l ~ i ~ 5), the following is derivable: 

(B & C) V D ~ (B V D) & (C V D). 

.. 
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Proof: By Theorem 2 of [4]. 

The following is the first lemma which requires more substantial proof. 

L mma 8. In J/2 ~ ·i ~ 5), the following is derivable: 

(B :JC) VD~ B :J (CV D). 

r of: The left-to-right half is in fact derivable in J 1 by fairly straightforward moves. Only 

h right-to-left half requires the extra postulates of J2. We sketch a derivation below, 

b rrowing from results in [4] where convenient. 

An instance of one of the sequents derivable in J 1 by Theorem 2 of (4) is 

(B :J (C v D)) & ((C v D) :J C) -+ B :J C, 

B :J (CV D), (C v D) :JC-+ B :JC ... (1) 

s an instance of V 
1

) we have 

B :J C -+ (B :J C) V D, 

and t his together with ( 1) yields by -+ 5) 

B :J (CV D), (CV D) :JC-+ (B :JC) v D ... (2). 

Easi ly derivable is 

B :J (CV D), D-+ (B :JC) VD, 

which together with (2) gives by V 
4

) 

B :J (CV D), ((CV D) :JC) v D-+ (B :JC) v D. 

Permuting antecedents by -+ 
4

) yields 

((CV D) :JC) VD, B :J (CV D)-+ (B :JC) VD ... (3), 

which will evidently give us the desired right-to-left half if we can derive 

-+((CV D) :JC) VD ... (4). 

This is the part of the derivation which requires the extra J 2-postulates. 
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By Theorem 4 of [4], ,A --+ A :J B is derivable in J2, though not in J 1. We use the 

in tance 

--, ( C v D) --+ ( C V D) :J C, 

which by V 
1

) and --+ 5) quickly gives 

,(CV D)--+ ((CV D) :JC) VD ... (5). 

Easily derivable is 

C --+ (C V D) :J C. 

which by V 
1

) and --+5) gives 

C--+ ((C v D) :JC) VD ... (6). 

n instance of V 2) is 

D--+ ((CV D) :JC) VD, 

which can be combined with (6) to give by V 4) 

(CV D)--+ ((CV D) :JC) VD. 

gain using V 4), this latter sequent together with (5) gives 

(CV D) V ,(CV D)--+ ((CV D) :JC) VD. 

But the antecedent is just an instance of , 4), so by --+5) we get the desired (4), yielding the 

right-to-left half of the equivalence of Lemma 8 as indicated. 

We turn now to the relationship between positive forrnHlas and their t-norrnal forms. 

Lemma 9. Let A be a formula oft,+ . Then both in Ji(2 ~ i ~ 5) and classically, A is provably 

quivalent to its t-normal form t(u(A)). 

roof: It suffices to show that A is provably equivalent to t(u(A)) in Ji(2 ~ i ~ 5); from this 

it follows that they are also provably equivalent classically by Lemma 1. We proceed by 

induction on the number n of connectives in A. 

Base case (n = 0). In this case, A is a propositional variable, so t(u(A)) = t(A) = A. 

Inductive step ( n = k for some k > O· inductive hypothesis: if B is a formula of t,+ with fewer 

.. 
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than k connectives, t hen B +-+ t(u(B)) in Ji (2 ~ i ~ 5)). Since n > 0, A must be implicative, 

conjunctive or disjunctive. We consider each of these possible forms in turn. 

(i) uppose A== B :JC. Then t(u(A)) == t(u(B :JC))== t(B :JC)== B :JC== A. 

(ii) Suppose A== B & C. Then t(u(A)) == t(u(B & C)) == t(B & C) == t(u(B)) & t(u(C)). 

ut the numbers of connectives in B and in C are smaller than the number of connectives in B 

& C; hence, on inductive hypothesis, we have B +-+ t(u(B)) and C +-+ t(u(C)). By virtue of the 

rules exhibited in the proof of Lemma 2, we then also have B & C +-+ t(u(B)) & t(u(C)), i.e. A 

+-+ (u(A)). 

(iii) In this case, A is disjunctive, and hence so is u(A). If u(A) is of the form (B :J C) V D, 

then we have t(u(A)) = t((B :J C) V D) == B :J (CV D). But then we have t(u(A)) ..-. u(A) 

by Lemma 8, and u(A) +-+ A by Lemma 5, whence t(u(A)) +-+ A. If u(A) is of the form (B & 

) v D, then t(u(A)) = t((B & C) VD) == t(u(B VD)) & t(u(C V D)). But the number of 

connectives in B V D is less than the number of connectives in (B & C) V D which is u(A) in 

the case we are considering and .which therefore has the same number as A by Lemma 6. 

imilarly for C V D. Hence, on inductive hypothesis, we have t(u(B V D)) +-+ B V D and 

t(u(C VD)) +-+CV D, which together yield t(u(B V D)) & t(u(C V D)) +-+ (B VD) & (CV 

D) by virtue of the rules in the proof of Lemma 2. But by Lemma 7, we have (B V D) & ( C V 

D) +-+ (B & C) VD, i.e. t(u(A)) +-+ u(A). Again by Lemma 5, we have u(A) +-+ A, and thus 

t(u(A)) +-+ A. Finally, if u(A) is disjunctive but not of the form (B :J C) V Dor of the form (B 

& C) VD, then t(u(A)) == u(A), and hence t(u(A)) +-+ A again by Lemma 5. 

This concludes the proof of Lemma 9. 

To establish the mam result of this section , it remains t o prove that t(u(A)) is a 

theorem of positive classical logic if and only if also a positive theorem of Ji(2 ~ i ~ 5); and it 

is precisely the form of t(u(A)) which will facilitate such proof. 

Lemma 10. Let A be a theorem of positive classical logic. Then t( u(A)) is either implicative 

or a finite conjunction of implicative formulas. 

Proof: We begin with the observation that no single propositional variable, nor any 

disjunction of propositional variables, is a theorem of positive classical logic. Thus, if A is 
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such a theorem, it must be conjunctive, implicative or a finite disjunction of formulas, at least 

one of which is conjunctive or implicative. It follows by Definition 6 that u(A) must itself be 

conjunctive implicative or of the form A1 V (A2 V ... V (Am-l V Am) ... ) (m) 2), where A.1 

is either conjunctive or implicative. 

We proceed by induction on the number n of connectives in A. 

Base case (n = 1). The smallest number of connectives that a theorem A of positive classical 

logic can have is 1, in which case A = p :) p for some propositional variable p, and t(u(A)) = 

t( u(p:) p)) = t(p:) p) = p:) p, which is implicative. 

Inductive step (n = k > 1). We consider in turn the three possible forms of u(A) mentioned in 

th preceding observation. 

(i) u(A) is of the form B:) C. In this case, t(u(A)) = t(B:) C) = B:) C, which is implicative. 

(ii) u(A) is of the form B & C. In this case u(A) = A = B & C, and since A is a theorem of 

positive classical logic, so are B a~d C, but with fewer connectives than A. Hence, on 

inductive hypothesis, each of t( u(B)) and t( u( C)) is either implicative or a finite conjunction 

of implicative formulas. It follows that t(u(B)) & t(u(C)) is also such a conjunction, but 

t (u(A)) = t(B & C) = t(u(B)) & t(u(C)). 

(iii) u(A) is of the form A1 V (A2 V ... V (Am-l V Am) ... ) (m) 2), where A1 is of the form B 

& C or B :J C. In the first case, t(u(A)) == t((B & C) V D) == t(u(B v D)) & t(u(C V D)) , 

where D stands for A2 V ... V Am. Again, each of B V D and C V D has fewer connectives 

than u(A) which has the same number as A by Lemma 6; hence, on inductive hypothesis, each 

of t( u(B V D)) and t( u( C V D)) is either implicative or a finite conjunction of implicative 

formulas, and therefore t(u(B V D)) & t(u(C V D)) is also such a conjunction. In the second 

case, t(u(A)) = t(( B:) C) VD)= B:) (CV D), which is implicative. 

So ends the proof of Lemma 10; its significance will now become apparent. 

L rnma 11. If A is a theorem of posi t ive classical logic, then D :) A is a theorem of Ji (2 ~ i ~ 

.. ) for any D E C. 

Proof: (The proof that follows is analogous to the proof of the Lemma of [7], which relates 

positive intuitionistic theorems and the theorems of J 
1 

in a similar way ). 
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Positive classical logic can be axiomatised by add ing Peirce 's law ((A :J B) :J A) :J A, 

o a suitable axiomatisation of positive intuitionistic logic. For present purposes, we follow [7] 

in tak ing positive intuitionistic logic to be formulated with modus pan.ens as the sole rule of 

inference. 

The proof proceeds by induction on the length n of the derivation of A in positive 

classical logic. 

Base case ( n = l ). In this case, A is an axiom of positive classical logic. By Theorem 2, all of 

I 

he axioms of positive intuitionistic logic are theorems of J 1 T, and hence also theorems of Ji 

(2 ( i ~ 5). And Peirce 's Law is a theorem of J2 and hence of Ji (2 ~ i ~ 5) by Theorem 4 of 

[4]. Thus, if A is an axiom of positive classical logic, then A is a t heorem of Ji (2 ~ i ~ 5). It 

follows straightforwardly that D :J A is also a theorem of Ji (2 ~ i ~ 5) for any D € l, by __.. 2) 

Inductive step ( n = k > l). Since positive classical logic is here taken to be formulated with 

modus ponens as sole rule of inference, A must be derived from premisses B and B :) A by an 

application of this rule. On inductive hypothesis, we have -+ D :) B and __.. D:,(B :) A) in Ji 

(2 ( i ~ 5). By &1) and -+ 5), we hence have --+ (D :) B) & (D :J (B :) A)), but as an instance 

of :J 2) we have (D :) B) & (D :) (B :) A)) --+ D :) A, so by --+ 5) we get __.. D:, A. 

Lemma 11 leads quickly to the following powerful result. 

Lemma 12. B :) C is a theorem of positive classical logic iff B :) C is a positive theorem of Ji 

(2 ~ i ~ 5). 

Proof. Assume that B :J C is a theorem of positive classical logic. Then by Lemma 11, we 

have-+ D :J (B :JC) in Ji (2 ~ i ~ 5) for any D ff,. In particular , we have--+ B:) (B :JC). 

ince we also have -+ B :J B by -+
1

) and :J
1

), we get --+ (B :J B) & (B :J (B :) C)) by &1) , 

which by :J 2) and --+ 5) quickly yields --+ B :J C. 

The converse follows by Lemma 1. 

Finally , we present the main result of t his section. 

Theorem 4. A is a theorem of positive classical logic iff A is a positive theorem of Ji 
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(2(i(5) . 

Proof: Since it has been established that, for Act,+, A and t(u(A)) are provably equivalent 

b th classjcally and in Ji (2 ~ i ~ 5), we need only prove that t(u(A)) is a theorem of positive 

classical logic iff t(u(A)) is a theorem of Ji (2 ~ i ~ 5). This we show by induction on the 

number n of connectives in t(u(A)). 

ase case (n == 1). In this case, t(u(A)) is implicative as in Lemma 10. By Lemma 12, it 

follows that t(u(A)) is a theorem of positive classical logic iff t(u(A)) is a positive theorem of 

Ji (2 ( i ~ 5). 

Inductive step (n == k > I). Assume that t(u(A)) is a theorem of positive classical logic. By 

Lemma 10, t( u(A)) is either implicative or a conjunction of implicative formulas. 

If t(u(A)) is implicative, then it is a theorem of Ji (2 ~ i ~ 5) by Lemma 12. If t(u(A)) is a 

conjunction of implicative formulas, then each conjunct is a theorem of positive classical logic. 

Moreover, inspection of Definition 7 reveals that (i) each conjunct must itself be of the form 

t(u(Ai)) for some Ai c t,+, and (ii) each conjunct must contain fewer connectives than 

t(u(A)). Hence on inductive hypothesis, each conjunct is a positive theorem of Ji (2 ~ i ~ 5), 

and hence so is their conjunction, i.e. t(u(A)). Thus, if t(u(A)) is a theorem of positive 

classical logic, it is also a positive theorem of Ji (2 ~ ,i ~ 5). The converse follows by 

L mma 1. 

We have shown, then, that the positive theorems of each Ji (2 ~ i· ~ 5) correspond 

precisely to the theorems of positive classical logic. This concludes our investigation of the 

positive parts of the J-systems of Arruda and da Costa. 



Chapter Two: Paraconsistency and the J-systems 

1. CONDITIONS FOR P ARACONSISTENCY 

Da Costa and Alves state in [10] that, in general, systems of paraconsistent logic must 

satisfy the following conditions: 

(I) from two contradictory formulas A and 1A, it must not be possible 1n general to 

deduce an arbitrary formula B; and 

(II) such systems should contain most of the schemata and deduction rules of classical logic 

that do not interfere with (I). 

Although further requirements have occasionally been added for particular 

paraconsistent systems (see, for example, (9]), these two conditions have consistently operated 

as the primary guiding principles for da Costa and his collaborators in the consutruction of 

th ir paraconsistent logics. 

However, this approach is not beyond controversy, for while (I) is universally accepted 

as a necessary condition for paraconsistent systems, (II) is less generally endorsed ( see, for 

example, [6], [7] and [15]. Indeed , dissent over (II) is sufficiently widespread that adherence to 

this condition has come to be regarded as a distinguishing feature of the BraziHan approach to 

paraconsistency (see [15]) . Without rehearsing the argumen ts of others in detail , a number of 

grounds for dissatisfaction with (II) are worth mentioning. 

Firstly da Costa himself notes that this condition is ~v ague" ([9J, p.498). Certainly , it 

is not clear exactly what measure of containment of classical schemata and rules constitutes 

satisfaction of the condition. But more significant is the fact that it ~s not determ£nat£ve. 

For it is conceivable - indeed, this will emerge in later sections - that two different schemata 



18 

or ru les could be singly but not jointly incorporated into a paraconsistent sys tem without 

com promising condition (I). In such a case, (II) suggests that one of the pair ought to be 

incorporated, or at least considered for incorporation , but no means of deciding between them 

is suggested. This indicates that, for (II) to be coherently applied in the construction of 

paraconsistent systems, it must be coupled with some account of the relative merits of 

competing candidate schemata and rules. One suggestion for such an account will be 

advanced in Section 5. 

A second objection to condition (II) is that it needlessly places on paraconsistent logics 

the burden of ensuring that inconsistent theories based on these logics sufficiently resemble 

their classical competitors to be considered as serious rival theories. For example, it 1s 

plausible that inconsistent set theories ( such as those constructed on the basis of the J­

systems in [4]) should sufficiently approximate classically based set theories for them to be 

considered to be genuine rival formal models of the same informal intuitions concerning sets. 

But it does not follow that this overall similarity should extend also to the components of the 

r spec ti ve theories, and in particular, to their logical bases. 

Finally, even if the general tenor of (II) 1s accepted, a case still exists for slightly 

modifying it. For it is noteworthy that, as a matter of practice, da Costa and his 

collaborators consider worth mentioning not only substantial containment of classical logic, 

but also containment of intuitionistic logic. (For example, Theorem 1 of [2] states that Cw, 

th weakest of the C-systems, contains the theorems of the intuitionistic positive calculus). 

This practice has led some authors to read into (II) the proviso that substantial containment 

of intuitionistic logic is a next-best alternative, or even a no worse alternative, to substantial 

containment of classical logic (see, for example , [6] and [19]) . This suggests that condition 

(II) be modified as follows: (II') paraconsistent systems should contain most of the schemata 

and deduction rules of classical or intuitionistic logic that do not interfere with (I). 
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2 . THE J-SYSTEMS AND THE P ARACONSISTENCY CONDITIONS 

Contrary to their intended purpose as logical bases for inconsistent set theories , it 

turned out· that· the J-systems do not all satisfy condition (I). J 5 explicitly fails in that the 

quent A, 1A ~Bis derivable in this system (by Theorem 18 of [4]) . Of the remainder , J 2 

t J 
4 

satisfy (I) in letter but not in spirit , for while A, 1A ~ B is not derivable in t hese 

ystems (by Theorems 5, 7 and 10 of (4]), the sequent A, 1A ~ B :) C is (by Theorem 1 of 

[5]). As a result, although the inconsistent theories based on J 2 to J4 do not collapse totally 

( as does the theory based on J 5), the collapse is near enough to complete for these syst ems to 

b effec t ively disqualified from further consideration as paraconsisten t logics ( see Theorem 4 

of [5]). 

This leaves only J 1, the weakest of the J-systems. As far as condition (I) is concerned, 

J 1 fares better than its stronger siblings: A, 1A ~ B is not derivable in J 1 (by Theorem 3 of 

[4]) , nor is A, 1A ~ B :) C (by Theorem 2 of [5]). It is rather because of its apparent failure 

to satisfy (II) that Arruda and da Costa take their leave not only of the stronger J-systems, 

u also of J 1 (see [5], p.186). 

Certainly, J 1 fails to contain some classically derivable sequents which would not 

bviously interfere with its satisfaction of (I) if they were incorporated. For example, it does 

no contain even all of the theorems of pos,iti"ve classical logic, since ~((A:) B) :) A) :) A is 

not derivable in J 1 (by Theorem 3 of [4]). But this constitutes only prima faci"e evidence that 

(II) is not satisfied ; the case is not settled until it is demonstrated that significant portions of 

clas ical logic not contained by J 1 can be added wi t hout compromising (I) . And in any case , 

( II) is itself open to question, as noted in Section 1. 

Of part icular interest in this regard is the suggested replacement of (II) by t he weaker 

(II' ). For when it comes to containing substantial parts of intuitionistic rather than classical 

1 gic J 1 fares somewhat better. Theorem 1 of [7] shows that the theorems of J 1 ~, the 

subsystem generated by only the negation-free postulates of J 
1

, are precisely the theorems of 

... 
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po itive intuitionistic logic; and the conservative extension result (Theorem 3) of Chapter 1 

sh ws that these are precisely the negation-free theorems of J 1. 

It is where negation is involved that J 1 diverges more spectacularly from intuitionistic 

logic, possibly to a greater extent than condition (II') envisages. Some of the intuitionistically 

d riv able sequents involving negation that are not derivable in J 1 are listed in Theorem 3 of 

[41 but one which is particularly striking, and which would least obviously interfere with the 

sa tisfact ion of (I) were it incorporated into J 1, is cited in Theorem 5 of that paper. The 

(infi nite) matrices supporting Theorem 5 are needlessly complex for present purposes, so we 

r state the result in question in greater generality, and supply simpler matrices for its proof. 

Theorem 1. In J 1, the following sequents are not derivable: 

-+ ,((A & 1A) & B); 

-+ 1X, where Xis any reassociation and/or permutation of (A & 1A) & B. 

Proof: The following matrices validate the postulates of J 
1

, but invalidate these sequents 

when A is assigned the value O and B is assigned the value 1. 

-+/ :> 0 1 2 i /\ / & 0 1 2 V 0 1 2 

0 0 1 2 0 0 0 1 2 0 0 0 0 

*1 0 0 2 2 I 1 1 2 1 0 1 1 

2 0 0 0 1 2 2 2 2 2 0 1 2 

(Th values O and 1 are designated; and the value of -+A is taken in this and all subsequent 

pro fs involving matrices for the J-systems to be the same as that of A). 

Even more striking than Theorem 1 is the following. 

Th orem 2. In J 1, the following sequents are not derivable: 

-+ 1(1A & A); 

--+ 1((A & 1A) & (A & 1A)); 

-+ 1((A & 1A) V (A & 1A)). 

Pr of: The fo!lowing matrices validate the postulates of J 
1 

but invalidate these sequents 

wh n A is assigned the value 0. 
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-+ / ~ 0 1 2 3 4 I A/ & 0 1 2 3 4 V 0 1 2 3 4 

*O 0 0 0 0 4 1 0 3 I 3 3 4 0 3 3 3 3 3 

* I 0 0 0 0 4 2 I 3 3 2 3 4 I 3 3 3 3 3 

*2 0 0 0 0 4 I 2 3 2 3 2 4 2 3 3 3 3 3 

~3 0 0 0 0 4 4 3 3 3 3 3 4 3 3 3 3 3 3 

4 0 0 0 0 0 3 4 4 4 4 4 4 4 3 3 3 3 4 

( n]y t he value 4 is not designated). 

T he above results provide a number of reasons for dissatisfaction with J 1. Firstly, it is 

ounterintuitive that the sequents of Theorems I and 2 are not derivable in J 1. This is not 

b a use of their underivability per se, but because the sequent of which they would ordinarily 

b taken to be merely syntactic variants, -+ 1(A & 1A), is explicitly incorporated as a 

p s tulate. It may be possible to provide a plausible motivation for such fine discrimination, 

bu t no such motivation is to be discerned in the discussion accompanying the construction of 

th J -systems in [4], nor in the sequel [5]. In the absence of any illuminating motivation, such 

fin discrimination is simply anomalous. 

Secondly, it may be that the absence of the (intuitionistically derivable) sequents of 

Th o rems 1 and 2 from the stock of derivable sequents of J 1 constitutes an infringement of 

(II' ). For the following result indicates that these sequents can be added to J 1 without 

nda ngering the satisfaction of (I). 

Th o rem 3. In the system formed by adding the sequents of Theorems I and 2 to the 

po t ulates of J 1, the sequents A, IA -+ B and A, IA --+ B ~ C are no t derivable. 

Proof: The following matrices validate the postulates of J 
1 

and the sequents of Theorems 1 

and 2 but invalidate A , IA --+ B when A assigned the value I and B is assigned the value 3, 

nd , I A -+ B ~ C when A is assigned the value 1, B is assigned the value O and C is 

ss igned t he value 3. 
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_. / -:> 0 1 2 3 I /\ / & 0 1 2 3 V 0 1 2 3 

*O 0 0 2 3 3 0 0 1 2 3 0 0 0 0 0 

*1 0 0 2 3 2 1 1 1 2 3 1 0 1 1 1 

2 0 0 0 3 1 2 2 2 2 3 2 0 1 2 2 

3 0 0 0 0 0 3 3 3 3 3 3 0 1 2 3 

(The values O and 1 are designated). 

Even if the sequents of Theorems 1 and 2 were added to J 1, however , there is no 

guarantee that further deficiencies could not be exhibited. In particular, it is likely that other 

syntactic variants of -. 1(A & 1A) would still prove to be underivable. Obviously, a more 

systematic strategy is needed; and this in turn requires that we establish which more general 

property is shown by Theorems 1 and 2 to be lacking from J 1. 

3. J 
1 

AND THE PROPERTY OF INTERSUBSTITUTIVITY OF 
PROV ABLE EQUIVALENTS 

The underivability of the sequents of Theorem 2 in J 1 is symptomatic of a more general 

ficiency, namely, that this system lacks SE, the property of intersubstitutivity of provable 

quivalents. The most natural way of defining provable equivalence in the J-systems is as 

fo llows: two formulas C and D are provably equivalent just in case the pair of sequents C-. D 

a nd D ~ C ( abbreviated C f--+ D) is derivable. SE, then, is the property that, if I' -. A is a 

d rivable sequent, B a subformula of some member(s) of I' and / or of A, and C a formula 

which is provably equivalent to B, then the sequent obtained by substituting C for some or all 

ucc urrence(s) of B in I'-. A is also derivable. Equivalent in this context is the property that , 

if B is a subformula of A, and B and C are provable equivalent , then so are A and the formula 

btained by substituting C for some or all occurrence(s) of B in A. 

Theorem 4. J 1 does not enjoy SE. 

Proof: Easily derived in J 
1 

are the sequents A & IA -. 1A & A and 1A & A -. A & 1A. If 

J 1 enjoyed SE, then _. 1(1A & A), the result of substituting 1A· & A for A & 1A m 

postulate 1 3), would also be derivable. But this sequent is not derivable, by Theorem 2; 

hence, J 1 does not enjoy SE. 

... 
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The proof of Theorem 4 illustrates how unsystematically the connective I behaves in 

J 
1

; two fo rmulas are provably equivalent and yet t heir putative negat ions are not (indeed, one 

is a postulate while the other is underivable). Of course, it may be possible to interpret I in 

su h a way that t his result is acceptable , but there is nothing in [4] and [5] to indicate that 1 

is to be int erpreted even as a special kind of negation, let alone as something other than 

n gat ion. Again , in t he absence of any such illumination, t he behaviour of this connective in 

J 
1 

is simply anomalous. (In [15], a similar view is expressed about the behaviour of : in t he 

-sys tems of da Costa, which similarly fail to enjoy SE; and in [13], it is argued t hat no 

r asonable conditional or biconditional can be expressed in the C-systems, again because of 

heir failure to enjoy SE). 

In general, the absence of SE makes it difficult to provide a natural and uniform 

interpretation of the connectives of a logic and the relations thereby definable. Technically, 

his t ends to be reflected in the complexity of formal semantical and algebraic perspectives 

(again, see [13] and [15], and also [14] and )9]) . 

The desired general strategy for remov1ng the deficiencies of J 
1 

exhibited in ( at least) 

Theorem 2, t hen , is to attempt to secure the property SE. In [19], the parallel problem of 

uring SE for the C-systems is addressed , and the respective addition of two rules is 

pro po ed. The appropriate versions of these rules in the present context are: 

RC 
C-+D 

1 D-+1C 
and EC 

By Lemma 2 of Chapter 1, J 
1 

enJoyes SE+ , the property of intersubstit utivi t y of 

prov ab le equivalents in negation-free contexts. It follows that., for any ex tension of J 
1 

(in t he 

same vocabulary), the admissibility of RC or of EC is sufficient to guarantee SE in full , and 

the admissibility of EC is also evidently necessary. (A rule is adm£ssi'ble in a sequent-based 
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sys tem just in case the system formed by adding t hat rule is a conservative ex t ension of, i. e. 

has t he same stock of derivable sequents as, the original system. Thus, every derivable ru le is 

admissible, but the converse does not generally hold). 

We now investigate the result of respectively adding RC and EC to J 1. That neither 

ru l is admissible in J 1 follows from Theorem 4; it is to be expected, therefore, that their 

ad i ti on will strengthen J 1 in an interesting way. 

The strength imparted by the addition of RC proves to be somewhat excessive. 

Theorem 5. In J 1 + RC, the sequent A, 1A -+ B is derivable. 

Proof: Application of -+2) to postulate 1 3) of J1 yields 1B -+ 1(A & 1A), from which 

11(A & 1A) -+ 11B follows by RC. Together with A & 1A -+ 11 (A & 1A), which is an 

ins tance of 1 1), this yields A & 1A -+ 11B by -+ 5). From this, A & 1A -+ B follows by 

1 2) a nd -+5), and from this A, 1A -+ B is easily derived using &1) and -+ 5). 

Unfortunately, the addition of the ostensibly weaker EC has precisely the same result. 

Th orem 6. In J 1 + EC, the sequent A, 1A -+ B is derivable. 

Proof: Application of -+
2

) to postulate 1
3

) yields 1(B & 1B) -+ 1(A & 1A). A parallel 

derivation yields the converse, 1(A & 1A) -+ 1(B & 1B). From these , EC delivers 11(A & 

1A) -+ 11(B & 1B), which quickly reduces to A & 1A-+ B & 1B using 1 1) , 1 2) and -+5). 

n instance of & 2) is B & 18 -+ B, whence -+
5

) yields A & 1A -+ B. As in the proof of 

Th orem 5, t his suffices to deliver A, 1A -+ B. 

As with J 5, t he derivability of A, 1A -+ B in J
1 

+ RC and J 1 + EC constitutes an 

xpl ici t violation of condition (I) , effectively disqualifying these systems from contention as 

paraconsis t ent logics. In fact, these t hree sy stems are equivalent. 

Thorem7. J 1 + EC=J 1 +RC=J
5

. 

Note: In this and subsequent proofs , we will make use of the following rules and sequen t, 
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which are easily shown to be derivable in J 1: 

Transitivity (of :J): 

Permutation of 

antecedents: 

Restricted modus 

ponens (sequent): 

Restricted modus 

ponens (rule): 

I'-+~D 6-+D-:JE 

I',6-+C-:JE 

-+C-:J(D-:JE) 

-+D-:J(C:)E) 

C, C :) (D :) E) -+ D -:J E 

I'-+C:) ( D:) E) 

I',C-+D:)E 

The sequent form of restricted modus ponens is shown to be derivable in J 1 in [7] 

(p.45 ); from this, -+ 4) and -+5) deliver the rule form. 

Proof: That J 
1 

+ EC is a subsystem of J 1 + RC is evident, since the derivability of RC 

ensures the derivability of the weaker EC. Moreover, J 1 + RC is a subsystem of J 5, since J 1 

is a subsystem of J 5 to begin with, and RC is easily derived in J 5 as follows. Assume C -+ 

D. From this, 1D, C --+ D follows by --+ 2). An instance of -+ 1) is 1D --+ 1D. But the last 

Lwo sequents yield 1D--+ 1C by postulate --+ 7) of J5. 

To complete the proof of Theorem 7, it suffices to show that J 5 is a subsystem of J 1 + 

EC, i.e. t hat those postulates which are added to J 
1 

in the construction of J 5 are derivable in 

J 1 + EC. These are -+ 7), 1 6) and 1 5). 

Postulate -+7) is the rule 

This is derived in J 1 + EC as follows. Assume 6, A --+ B and 6 -+ 18. Applications 

of-+_) and -+ 4 ) to the second sequent give 6, A -+ 1B, which can be combined with the first 

to yield 6, A -+ B & 18 (see Theorem 2 of [4]). But B & 1B --+ 1A is derivable in J 1 + EC 

by Theorem 6; hence by --+ 5), we get 6, A --+ 1A. Easily derived by --+ 1) and -+ 2) is 6 , 1A 

--+ 1A; hence V 4) yields 6 , A V 1A --+ 1A. -Applications of--+ 
4

) transform this into A V 1A, 
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6 -+ 1 A, from which 6 -+ 1A follows by 1 4) and -+ 5) . Thus, -+1) is derivable in J 
1 

+ EC. 

Postulate 1
6

) is the sequent 1A, 1B -+ 1( A V B). This is derived in J 1 + EC as 

follows. Firstly , we have 1A, 1B, A V B -+ (1A & 1B) & (A V B) by & 1) and -+5). By 

dis tribution (see Theorem 2 of [41) , we have (1A & 1B) & (AV B) -+ ((1A & 1B) & A) V 

((1A & 1B) & 8) , whence 1A, 18, AV B-+ ((1A & 1B) & A) V ((1A & 1B) & B) by 

-+ 5). But (1A & 18) & A-+ A & 1A is easily derived, and (IA & 1B) & B-+ A & 1A is 

derivable in J 1 + EC by virtue of Theorem 6; hence, we have ( (1A & 18) & A) V ( (1A & 

1 B) & B) -+ A & 1A by V 4), and therefore 1A, 1B, A V B-+ A & 1A by -+ 5). From 1 3), 

1A, 1B -+ 1(A & IA) follows by -+ 2). From the last two sequents, the above-derived -+7) 

delivers the desired IA, 1B -+ 1(A V B). 

Postulate 1 5) is the sequent-+ (A :) B) :) ((A:) 1B) :) IA). This is derived in J1 + 

EC as follows. Firstly, we have A :) B, A :) 18 -+ A :) (B & 1B) by &1) and &4). But by 

Theorem 6, B & 18 -+ IA is derivable in J 1 + EC, and hence so is -+ (B & 1B) :) IA by 

:) 1). By transitivity, we therefore have A :) B, A :) 1B -+ A :) IA. Easily derived using V 3) 

is A :J IA -+ (A V 1A) :J 1A, so by -+5), we get A :J B, A :J 1B -+ (A V 1A) :J 1A. 

Applying :J 1) and permuting antecedents gives -+ (A V 1A) :) ((A :) B) :) ((A :) 1B) :) 

IA)), from which A V -+ (A :) B) :) ((A :) 1B) :) 1A) follows by the restricted modus 

ponens rule. The desired 1 5) then follows by 1 4) and -+5). 

This concludes the proof of Theorem 7. 

We note that the proofs of Theorems 6 and 7 do not rely upon the actual derivability of 

EC in J 1 + EC; it suffices merely that this rule is admissible. But the admissibili ty of EC in -

an y extension of J 1 is a necessary condition for SE. We can t herefore state the foil owing more 

general result. 

Theorem 8. There is no extension of J 
1 

which enjoys SE but which is weaker t han J 
5

. 

We conclude t hat t he deficiencies of J 1 exhibi ted in Theorems 1 and 2 cannot be 

rernedied by extending t h is system so as to secure SE wi t ho ut th ereby rendering zt too strong 

to satisfy paraconsistency condition (I). Two alternative strategies present themselves: (i) to 
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extend J 
1 

so as to secure not SE but some weaker version of this property which would 

nonetheless at least mi ti gate these deficiencies· and (ii) to explore methods of variation other 

than ext€nsion. TAese strategies ,will be investigated in the next two- sections. 

4. J AI\TJJ WEAKER VERSIONS OF THE PROPERTY OF 
INTEtlSUBSTITUTIVITY OF PROV ABLE EQUIVALENTS 

Two weaker versions of SE suggest themselves, each a restricted variant of one of the 

equivalent statements of SE presented in Section 3. Firstly, let SE' be the property that , if A 

is a theorem (i.e. -+A is derivable), Bis a subformula of A, and C is provably equivalent to B, 

then the formula obtained by substituting C for some or all occurrence(s) of B in A is also a 

theorem. SE' is the property of intersubstitutivity of provable equivalents in theorems, and 

its obtaining would at least avoid the deficiencies exhibited in Theorem 2. A second variant is 

SE", which is the property that, if B is a subformula of A, and A( C) is the result of 

substituting a formula C which is provably equivalent to B for some or all occurrence(s) of B 

in A, then -+ A = A( C) is a derivable sequent. ( C = D abbreviates the formula ( C :i D) & (D 

:i C)). 

Theorem 9. J 1 does not enjoy SE'. 

Proof: As for Theorem 4. 

Theorem 10. J 1 does not enjoy SE". 

Proof: As in the proof of Theorem 4, A & IA and IA & A a.re provably equivalent in J 1. If 

J 1 enjoyed SE", then -+ 1(A & IA) = 1(1A & A) would be derivable. But the matrices of 

Theorem 2, which validate the postulates of J 
1

, invalidate t his sequent when A is assigned t he 

value O; hence , J 1 does not enjoy SE". 

Theorem 11. Every extension of J 1 which enjoys SE' also enjoys SE", but not conversely . 

Proof: To establish the first part, it suffices to note that A = A is a theorem of J 1 for an y 

formula A. If SE' holds , then any occurrence of a su bformula B of A can be replaced by a 

provably equivalent formula C; hence, A= A(C) is also a theorem, and SE" holds. 
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To establish the second part, it suffices to exhibit an extension of J 1 which enjoys SE" 

but not SE'. Consider the system J 1' constructed by adding the postulate -+ A = B to J 
1

. 

Trivially J 
1

1 enjoys SE". · Howeve·r, ' the matrices 1ri the ·proof bf · Theorem· 2, with the 

modification that A :) B is assigned the value O always, validate the postulates of J 
1

1 but 

continue to invalidate the sequents of Theorem 2; hence J 1' does not enjoy SE'. 

It follows from Theorem 11 that any addition to J 1 which is necessary to secure SE" is 

necessary also for SE'. We therefore proceed to establish which additions are necessary for the 

weaker property. 

It is easy to verify that the admissibility of the following variant of EC in any extension 

0f J 1 is a necessary condition for SE": 

C+-+D 
EC :J 

Moreover, a straightforward inductive argument can be used to establish that the 

admissibility of EC :) is also sufficient for SE", since the following rules are already derivable 

in J 
1

: 

C+-+D 

-+B*C=B*D 

where * represents any of the connectives &, V or :J. 

The admissibility of any of the following rules is evidently also sufficient: 

C-+D 
RC :J 

-+ 1D:J1C 

-+C=D 
:J EC :J 

-+ 1D:J1C 

-+C:JD 
:J RC :J 

-+ 1D:J1C 
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We now consider the systems formed by respectively adding these rules to J 
1

. In fact , 

these systems are all equivalent. 

Th orem 12. J 1 + EC:J=J1 +RC:J=J 1 +:JEC:)=J 1 :JRC:J. 

Proof: Evidently, J 1 + EC :J is a subsystem of both J 1 + RC :J and J 1 + :J EC :J, and both 

of these are subsystems of J 
1 

+ :J RC :J. We need only show, therefore, that J 1 + :J RC :J is 

a subsystem of J 1 + EC :J, i.e. that :J RC :J is derivable in J 1 + EC :J. 

By 1 3) and -+
2
), we have 1(C & 1C) +-+ 1(D & 1D) in J 1. Applying EC:) yields-+ 

11(D & 1D) :J 11(C & 1C), which, using 1
1
), 1 2), :J 1) and transitivity, is easily reduced 

to -+(D & 1D) :J ( C & 1C). By &3), :J 1) and transitivity, this further reduces to -+(D & 

"lD) :J 1C. Applying :J 1) to an instance of &1) gives D -+ 1D :J (D & 1D), which together 

with the preceding sequent, yields by transitivity, D -+ 1D :J 1C. Applying :J 1) gives -+ D 

:J(1D :J 1C). 

An instance of V 3) is ( C :J 1C) & (1C :J 1C) -+ ( C V 1C) :J 1C, which is transformed 

into C :J 1C, 1C :J 1C -+ (C V 1C) :J 1C by &
1

) and -+
5

), and further into 1C :J 1C -+ 

(C :J 1C) :J ((C V 1C) :J 1C) by -+ 4) and :J 1). But -+ 1C :J 1C is derivable by -+ 1) and 

:J1), so -+5) delivers -+ (C :J 1C) :J ((C V 1C) :J 1C). Permutation of antecedents 

transforms this into -+ (C V 1C) :J ((C :J 1C) :J 1C), from which the restricted modus 

ponens rule gives C V 1C -+ ( C :J 1C) :J 1C. From this, -+ ( C :J 1C) :J 1C follows by 1 4) 

and -+
5

). 

We now consider :J RC :J. Assume -+ C :J D. Together with the sequent -+ D :) (1D :J 

"lC) derived above, this yields by transitivity, -+ C :J (1D :) 1C). Permuting antecedents 

gives -+ 1D :J (C :J 1C) , which, together with the last sequent of the preceding paragraph, 

yields by transitivity , -+ 1D :J 1C. Thus, :J RC :) is derivable in J 
1 
+ EC :J. 

This concludes the proof of Theorem 12. 

Interestingly, J 1 EC :J also has an equivalent formulation purely rn terms of the 

po tulates of the J-systems. 

Theorem 13. Let J l.S be the system formed by adding to J 
1 

postulate 1 5) of J 2. Then J 1 + 
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EC:,= J1.s· 

Proof: To show that J 
1 

+ EC :, is a subsystem of J 1.S' it suffices to derive EC :, in the latter 

system. This is derived as follows. An instance of postulate 1 5) is -+ ( C :, D) :, ( ( C :, 1D) 

:, 1 C). Using the restricted modus ponens rule, this is transformed in to C :, D -+ ( C :, 1D) 

:, 1C. Easily derived using -+ 1), 1 2) and :, 1) is -+ 1D :J (C :J 1D), whence transitivity 

yields C :, D -+ 1D :, 1C. But -+ C :, D follows from the premise of EC :, ( or of any of the 

other three rules); whence -+5) yields the conclusion, -+ 1D :J 1C. Thus, EC :, is derivable 

in J 1.s· 

To show conversely that J 1. 5 is a subsystem of J 1 + EC :,, it suffices to derive 1 5) in J 1 

+ EC :,. An instance of &
4

) is (A :, B) & (A :, 1B) -+ A :, (B & 1B), which by & 1) and 

-+5) is transformed into A :, B, A :) 1B -+ A :, (B & "lB). As in the proof of Theorem 12, 

the sequent -+ (B & "18) :, "lA is derivable in J 1 + EC :); hence transitivity yields A :) B, A 

:, 18 -+ A :, 1A. Applying :,
1

) gives A :, B -+ (A :, 1B) :) (A :, "lA). Again as in the 

proof of Theorem 12, -+ (A :, "lA) :) "lA is derivable in J 1 + EC :,, so transitivity delivers A 

:, B -+ (A :) "lB) :, 1A, from which the desired 1 5) follows by :, 1). Thus, 1 5) is derivable in 
. 

J 1 + EC. 

This concludes the proof of Theorem 13. 

J 1. 5 lies between J 1 and J 2," but it is equivalent to neither. 

Theorem 14. J 1 -:j:. J 1.5. 

Proof: That postulate 1 5) of J LS is not derivable in J 1 is sh.own in Theorem 3 of [4]. 

However, the result also follows from the fact that J l.S enjoys SE", while J 1 does not, by 

Theorem 10 above. 

Theon~m 15. J l.S -:j:. J2. 

Proof: The matrices in the proof of Theorem 2, as modified in the proof of Theorem 11 , 

validate the postulates of Jl. 5 but invalidate postulate 1 6) of J2 when A and B are both 

assigned the value 0. 



31 

Unfortunately , even though J 1 + EC :> ( = J 1.s) is weaker t han J 2, it similarly fails to 

su bstan ti vely satisfy paraconsistency condition ( I) . 

Theorem 16. In J 
1 

+ EC :>, the sequent A , 1A -+ B :> C is derivable. 

P roof: As in the proof of Theorem 12, -+ (A & 1A) :> (C & 1C) is derivable in J 1 + EC :>. 

By &
2

), :> 
1

) and transitivity , this yields -+ (A & 1A) :> C. But -+ C :>(B :) C) is easily 

derived using -+
1
), -+

2
) and :> 1); whence transitivity again yields -+(A & 1A) :) (B :) C). 

Using the restricted version of modus ponens cited in the proof of Theorem 7, this is 

t ransformed into A & 1A -+ B :) C, from which A, 1A -+ B :> C follows by &1) and -+5). 

We note that the proofs of Theorems 13 and 16 ( and those parts of the proof of 

Theorem 12 which they presuppose) do not rely upon the actual derivability of EC :) in J1 + 

EC :J; it suffices merely that this rule is admissible. But the admissibility of EC :) in any 

extension of J 1 is a necessary condition for SE". We can therefore state the following more 

general result. 

Theorem 17. There is no extension of J 1 which enjoys SE" but which is weaker than J 1.s· 

From Theorems 11 and 17, the following is also immediate. 

Theorem 18. There is no extension of J 1 which enjoys SE' but which is weaker than J 1.s· 

We conclude that even the weaker versions of SE considered in this section cannot be 

ecured by extending J 
1 

without substantially compromising its satisfaction of (I). We turn 

inst ead t o methods of variation other than extension. 

5. OTHER METHODS OF VARIATION 

The obvious alternative to extension is subtraction. In par t icular , it may be t hat 

ys tems obtained by deleting some of the postulates of J 
1

, 1.e. subsystems of J 1, could be 

shown to either enjoy SE naturally or be amenable to ex tension so as to secure this property 

without infringing condition (I). 
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A likely candidate for deletion is postulate 1 3). The motivation for extending J 1 in the 

first place was to remove the anomalies exhibited in Theorems 1 and 2; but these results are 

anomalous only because J 1 incorporates 1 3) - the anomalies might just as well be removed by 

deleting this postulate as by adding its variants. The subsystem so obtained would still enjoy 
-

E+, since the rules required to guarantee this property would not be affected by the deletion 

of a negation postulate, and it would also evidently satisfy (I), since the sequents A, 1A -+ B 

and A, 1A -+ B :) C would still not be derivable. If, in addition, the admissibility of RC or 

EC in this subsystem could be established, then it would enjoy SE naturally; and even if not, 

it may be that these rules could be added without compromising its satisfaction of (I). 

Similar considerations apply also to the removal of any of the other negation postulates 

of J 1. Of course, an obvious constraint on this strategy of subtraction is condition (II). At 

first glance, it would appear that the deletion of any of the postulates of J 1 would increase the 

degree to which (II) is not satisfied. However, there are several considerations which indicate 

that the matter is not so straightforward 

Firstly, there is the suggested replacement of (II) by (II'). It may be that the deletion 

from J 1 of the intuitionistically underivable postulates 1 2) and 1 4) would leave unaffected its 

stock of intuitionistically derivable rules and sequents, in which case the satisfaction of (II') 

would not be diminished. Of course, the subsystem so obtained would fail to enjoy SE, since 

it would still incorporate 1 3) but not its variants listed in Theorem 2; but again it may be 

that the addition of RC or EC in order to secure SE would not entail the undesirable 

consequences of the corresponding additions to J 1. 

Even without resorting to the intuitionistic escape clause of (II'), however, there are 

good reasons for not being too concerned by the deletion of some of the negation postulates of 

J 1, especially if this allows the addition of such a rule as RC without harm to the satisfaction 

of (I). This is the case foreshadowed in Section 1; we are assuming that, for some subsystem 

of J 1 the addition of a missing negation postulate results in J 1, which satisfies (I), and the 
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addition of RC results in some other system which also satisfies (I), but the addition of both 

the postulate and RC results in J 5, which does not satisfy (I). Condition (II) suggests that 

one or the other . .ought. to .be a.dded, .b.ut, .it:does. not ~ugg~t .which. 

An argument which weighs heavily in favour of adding RC in this case is that this 

addition would guarantee the systematic behaviour of 1 , while the addition of the competing 

postulate would only result in the unsystematic behaviour documented in Theorems I and 2. 

This suggests that RC is more general, or expresses a more fundamental property of negation, 

than any of the negation postulates of J 1. ·certainly, this rule is incorporated in a very broad 

range of logics, including all of the negation systems of [ 8] ( among them, classical and 

intuitionistic logic, and Johansson 's "minimal calculus"), and also all of the main relevant 

logics (see [18]). On the other hand, postulates 1 2) and 1 4) are not so universally 

incorporated, which suggests that they express properties of a somewhat special ( and strong) 

type of negation; and, perhaps more interestingly, (the appropriate versions of) 1 1) and 1 3) 

are notably absent from the C-systems of da Costa. 

The widespread inclusion of RC is hardly surprising, for this rule expresses little more 

than that negation reverses the order of strength among propositions: the weaker a 

proposition, the stronger is its rejection or denial; and the stronger the proposition, the 

weaker its denial. Indeed , it is difficult to see how a connective not conforming to this rule 

can be interpreted as negation at all, rather than as some more enigmatic functor. These 

considerations apply also to the weaker EC; indeed, this rule expresses the even less arresting 

precept that a logic which identifies two propositions should not dis t inguish between their 

denials. Again, it is difficult to see how a connective which does not conform to this rule can 

be interpreted as anything other than a very selective type of negation , if as negation at all. 

ThP considerations expressed in t his section indicate that an investigat ion into the 

subsystems of J 1, augmented by RC or EC if required , is well warranted. Accordingly , a 

detailed investigation is undertaken in the next two chapters. 



Chapter Three: Subsystems of J 1 

!.THE SYSTEMS Ji (O ~ i ~ 1) 

The system J 1 is the weakest of the J-systems introduced by Arruda and da Costa in [4]. 

As shown in Chapter 2, however , J 1 is still too strong to be amenable t o extension so as to 

secure the property of in t ersubstitutivity of provable equivalents without forfeiting its 

satisfaction of the main condition for paraconsistent logics. It is of interest , therefore, to 

define and investigate still weaker J-systems, i.e. subsystems of J 1. 

A natural collection of subsystems is obtained by varying only the negation postulates 

of J 1. Specifically , we define the base system J O to be that subsystem obtained by omitting 

postulates -\) to , 4) from J 1. (Although J0 has no postulates specifically governing 

negation , it is understood to be defined over the full vocabulary ! (including 1) of J 1; thus, it 

differs from the positive subsystem J 1 + of J 1, which has the same postulates as J 0, but which 

is defined over just the positive vocabulary t+ (see Chapter 1)). The collection Ji (O ~ ,i ~ 1) 

is defined to include any system formed by adding to J 0 some subset of the postulates 1 1) to 

14)· 

The systems Ji(O ~ i ~ 1) can be grouped into three dis t inct branches. Firstly , the 

i'ntui t'ion'i st'ic branch comprises J0 and those systems formed by adding to J0 either or both of 

t he intui t ionistically derivable negation postulates 1 1) and , 3) . Since all of the postulates of 

J0 are t hemselves intuitionistically derivable , these systems have t he propert y t hat every 

sequen t derivable in t hem is ab o intuitionistically deri vable. Opposite to t he intuit ionistic 

branch is t he dualz'ntu,£t£on'£st£c branch, which comprises t hose systems formed by adding to 

J0 either or both of the negation postulates 1
2

) and 1 4), which are :i; dual" to the 

intuitionistic postulates 1 1) and 1 3) . Finally , the £n termed£ate branch comprises those 
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systems which contain both intuitionistic and dualintuitionistic negation postulates. 

The following systems will prove to be parti-cularly interestiag: 

J 
0

, J
O

• 
1 

and J
O

• 
3 

are intuitionistic; JO• 2 and J O• 4 are dualintuitionistic; and J O• 5 and, 

of course, J 
1 

are intermediate. The relations of containment holding between these systems 

are set out below, with weaker systems placed below stronger ones. (It will be shown in 

Section 8 that these systems are in fact distinct). 
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2. POSITIVE PARTS 

We begin our investigation of the deductive strength of the systems Ji(O ~ i ~ l) by 

considering their positive parts. Terminology is as in Chapter 1. 

Theorem 1. For each Ji (0 < -i ~ 1), Ji+ = J 0 +. 

Proof: As in [7] and Chapter 1, Ji+ is the positive subsystem of Ji' i.e. the system generated 

by only the negation-free instances of the postulates of Ji. Evidently, J 0 is a subsystem of 

each Ji (0 < i < 1), hence J0 + is a subsystem of each Ji+ (0 < i ~ 1). But there can be no 

negation-free instances of postulates of any Ji (0 < i < 1) in addition to those of J 0 + , for each 

system in this family is constructed by adding to J 0 only postulates which involve negation 

explicitly. Therefore, for each Ji (0 < i < 1), Ji+= J 0 +. 

Corollary. The theorems of each Ji+ (0 <£<I) are exactly those of positive intuitionistic 

logic. (As in Chapter 1, A is a theorem of a J-system just in case the sequent -+A is derivable 

in that system). 

Proof: This follows directly from the above result and Theorem 1 of [7], in which it is shown 

that the theorems of J 1 + are exactly those of positive intuitionistic logic. 

Theorem 2. Each Ji (0 < i < 1) is a conservat£ve extension of its positive subsystem, Ji+. 

Proof: As in Chapter 1, J. is said to be a conservative extension of J .+ just in case every 
t t 

positive sequent derivable in J. is also derivable in J .+. That this is so for each J. (0 ~ i ~ 1) 
t i t 

follows from the conservative extension result for J 1 in Theorem 3 of Chapter 1. For if any 

positive sequent were derivable in some Ji (0 < i < 1) but not in Ji+, then that sequent would 

also be derivable in J 1 but not in J 1 +, contradicting that conservative extension result. 

Corollary. The positive theorems of each Ji (0 < £ ~ l) are exactly those of positive 

in tui tionistic logic. 

Proof: From the conservative extension result above, it follows 1n particular that every 

positive theorem of J . must also be a theorem of J .+. This, together with the Corollary to 
i t 

Theorem 1, suffices to establish the result. 

The above results go some way towards illuminating the deductive strength of the 
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systems Ji (0 ~ ,i ~ 1). However, it would be much more informative if all of the theorems of 

each of these systems, not just the negation-free theorems, could be shown to coincide with 

those of some axiomatic system. Indeed, this can be achieved for most of the J-systems under 

consideration. The remainder of the chapter will be devoted mainly to this task. 

3. AXIOMATIC SYSTEMS 

We provide a list of postulates from which various axiomatic systems can be assembled: 

(1) A:J(B:JA) 

(2) (A :J B) :J ((A :J(B :JC)) :J (A :JC)) 

A A:>B 
(3) 

B 

(4) (A & B) :J A 

(5) (A & B) :> B 

(6) A :J (B :> (A & B)) 

(7) A :> (A V B) 

(8) B :> (A V B) 

(9) (A:> C) :> ((B :> C) :>((AV B) :JC)). 

(10) AV 1A 

( 11) 11A :> A 

(12) A:> 11A 

(13) 1(A & 1A). 

(The inclusion of (3) as a postulate is in conformity with the axiomatics for the C-systems 

provided in [9]). 

Postulates (1) to (11) form Cw, the weakest of the C-systems. If (10) and (11) are 

replaced by their "duals" (12) and (13), the resulting system is an intuitionistic variant of Cw, 

which is henceforth referred to as !Cw. (This system is related to the intuitionistic variants of 

the C-systems constructed in [3] and [6]) . Similarly , NC is defined to be the system 
w 

constituted by (1) and (9) plus the double-negation postulates (11) and (12). Finally , OCw is 
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defined to be the system constituted by just (1) to (9). (Of course, (1) to (9) also axiomat ise 

positive intuitionistic logic, but like J0, OCw is understood to be defined over the full 

vocabulary f, rather than just e+). 

4. GENTZEN-STYLE SYSTEMS 

For each of the axiomatic systems defined in Section 3, we define a corresponding 

Gentzen-style system. Terminology is as in Gentzen's [12]. 

LOCw is a (singular in the succedent) system which has the following components: 

(i) initial sequents of the form A-+A (where A is any formula of l); 

(ii) structural inference figures: Thinning, Contraction, Interchange ( all in the antecedent), 

and Cut; 

(iii) operational inference figures: &-IA, &-IS, V-IA, V-IS, :)-IA and :)-IS (all singular in the 

succedent). 

We extend LOC by adding one or both of the following operational inference figures: 
w 

11 - IA: 
A,I' -+B I' -+B 

11 - IS: 
11A,I' -+B I' -+11B 

The systems LOC + 11 - IA and LOC + 11 - IS will not be given special names, 
w w 

but LOC + 11 - IA+ 11 - IS will be called LNC . 
w w 

These systems may be further extended by adding either or both of the following as 

initial sequents: 

(i) those of the form -+- A V 1A (EM); 

(ii) those of the form-+- 1(A & 1A) (NC). 
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· The system LOCw 11 - IA + EM will be called LC ...; i while the system LOCw + ii -

IS + NC will be called LICw. (We note that the addition of EM in this context is equivalent 

to the addition of Curry 's rule Nx (see [8]) : 

A .I' -+B 1A,I' -+B 

I' -+B 
) . 

5. EQUIVALENCE OF AXIOMATIC AND GENTZEN-STYLE SYSTEMS 

Theorem 3. The systems LOC and OC are equivalent in the following sense: if A 1, ... , .. A. 
w w n 

-+ B (respectively,-+ B) is a derivable sequent in LOCw, then (A1& ... &A.n) :J B (respectively, 

B) is a theorem of OCw, and (ii) if B is a theorem of OCw then -+ B is a derivable sequent in 

LOC . Similarly equivalent are the following pairs of systems: 
w 

LOC + Ii - IA and ocw + (11); w 

LOC + Ii - IS and ocw + (12); w 

LNC and NC 
w w 

LIC and IC 
w w 

LC and C w w 
LNC +NC+ EM and NCW + (10) + (13). w 

Proof: The proof is by induction on length of derivation. We illust;ate with LCw and Cw. 

To prove (i), we establish initially that the formulas A :) A and A V I A corresponding 

to the initial sequents of LC are theorems of C . Then we consider the inference figures. If, 
w w 

for example, the sequent 11A, C
1

, ... ,C -+ B is derived in LC by Ii - IA from A, C1, ... ,C n w n 

-+ B, then on inductive hypothesis (A & C1 & ... & Cn ) :J B is a theorem of Cw , from which 

(liA & C1 & ... & Cn) :J Bis derivable with the assistance of (11). 

To prove (ii), we establish initially that t he axioms of Cw are all derivable in LCw. For 

example, ( 1) corresponds to -+ A :J (B :J A), which is derived from the initial sequent A -+ A 

by Thinning and two applications of :) - IS. Then we consider the case in which a formula B 
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is derived by (3) in C:..; from formulas A and A :) B. On inductive hypothesis, -+ A and -+ A 

:) B are derivable in LCw, and hence so is -+ A & (A :) B). But A &(A :) B) -+ B is easily 

derived in LC , whence -+ B follows by Cut. 
w 

Such inductive proofs can be constructed for all of the pairs of systems listed 1n 

Theorem 3. 

6. CUT-ELIMINABILITY FOR THE GENTZEN-STYLE SYSTEMS 

We now prove that the inference figure Cut is eliminable from most of the Gentzen-style 

systems mentioned in Theorem 3. By this is meant that any sequent which is derivable in 

such a system also has a derivation in which Cut does not figure. The value of such proofs 

lies in the fact that they enable straightforward demonstrations of specific deductive 

properties which might otherwise be difficult to establish. For the systems presently under 

consideration, it will be shown that each has properties from among those listed below. 

CP (Conjunction Property). A system is said to have this property just in case B & C is a 

theorem only if both B and C are also theorems. 

DP (Disjunction property). A system is said to have this property just in case B V C is a 

theorem only if at least one of B and C is also a theorem. 

NPl (Negation Property 1). A system is said to have this property just in case no formula of 

the form 1B is a theorem. 

NP2 (Negation Property 2). A system is said to have this property just in case a formula 1B 

is a theorem only if B is itself of the form 1C where C is a theorem. 

NP3 (Negation Property 3). A system is said to have this property just in case a formula 1B 

is a theorem only if B is either itself of the form 1C where C is a theorem, or of the form C & 

,c. 

General comment: In what follows, we will not present entire Cut-elimination proofs for the 

systems under consideration, but rather indicate only how Gentzen 's Cut-elimination proof for 

intuitionistic logic LJ in [12] needs to be modified in each case. The sections of Gentzen 's 

proof which are of particular interest are the following. 
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3.111. In this section, it is supposed that t he left-hand upper sequent of the mix at the end of 

a derivation is an initial sequent. 

3.112. In this section, it is supposed that the right-hand upper sequent of t he mix 1s an 

initial sequent. 

3.113. In this section, it is supposed that neither the left-hand nor the right-hand upper 

sequent of the mix is an initial sequent; both are therefore lower sequents of inference figures. 

Gentzen observes in 3.113 that the following holds generally of inference figures of LJ: if 

a formula occurs in t he antecedent (succedent) of the lower sequent of an inference figure , it is 

either a principal formula or the [) of a Thinning, or else it also occurs in the antecedent 

(succedent) in at least one upper sequent of the inference figure. The special case in which the 

mix formula .M occurs in at least one upper sequent of the inference figures immediately above 

the mix is dealt with by Gentzen in section 3.12; the case in which .M is introduced by 

Thinning is dealt with in section 3.113.2; and the sole remaining case, in which .M occurs 

both in the succedent of the left-hand upper sequent and in the antecedent of the right-hand 

upper sequent of the mix as the principal formula of one of the operational inference figures , is 

dealt with in section 3.113.3. 

Turning to the Gentzen-style systems listed in Theorem 3, we note that Gentzen 's 

observation in section 3.113 holds also of the inference figures 11-IA and 11-IS. There are 

therefore no cases except those considered in sections 3.12, 3.113.2 and 3.113.3 which can 

arise as a result of the presence of these additional figures. Moreover, Gentzen 's treatment of 

the operational inference figures with one upper sequent in section 3.12 (in particular , in 

3.121.22 and 3.122) applies without modification to both of the figures 11-IA and 11-IS; 

and the treatment of Thinning in section 3.113.2 also applies without modification to the 

systems under consideration. So the only section in which the presence of 11-IA and 11-IS 

can make an interesting difference is 3.113.3 - in particular , 3.13.35 , in which it is supposed 

that the terminal symbol of the mix formula M is 1. 

For those systems incorporating NC or EM as additional initial sequents, sections 3.111 

and 3.112 also need t o be reconsidered. 

With these considerations expressed , we proceed to the Cut-elimination proofs. 
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The inference figure Cut is eliminable from LOC . w 

Proof: Only the following section of Gentzen 's proof needs to be reconsidered. 

3.113.3. In this section , the mix formula M is assumed to occur both in the succedent of the 

left-hand upper sequent and in the antecedent of the right-hand upper sequent solely as the 

principal formula of one of the operational inference figures. But this precludes the possibility 

that the terminal symbol of .M is 1, since LOCw has no operational inference figures dealing 

specifically with negation. Hence, paragraph 3.113.35 is simply omitted. 

Corollary. OC has CP, DP and NPl. w 

Proof: By Theorem 3, a formula A is a theorem of OC if and only if -+ A is a derivable w 

sequent of LOC . By Theorem 4, if -+- A is a derivable sequent of LOC , then there is a w w 

Cut-free derivation of -+ A in LOC . These facts enable a straightforward proof of the w 

Corollary as fallows. 

CP: If A is a theorem of OC and of the form B & C, then in LOC there is a Cut-free w w 

derivation of -+- B & C. There are no initial sequents of this form, so the only possible Cut­

free derivation is one in which -+ B & C is derived by & - IS from -+ B and -+ C. But then B 

and C are both theorems of OC . Hence, OC has CP. w w 

DP: If A is a theorem of OC and of the form B V C, then in LOC there is a Cut-free w w 

derivation of-+ B V C. There are no initial sequents of this form, so the only possible Cut-free 

derivation is one in which -+ B V C is derived by V - IS from -+ B or from -+ C. But then at 

least one of B and C is a theorem of OC . Hence, OC has DP. 
w w 

NP 1: If there were a theorem of OCw of the form I B, then 1n LOCw there would be a 

Cut-free derivation of-+ 1 B. But there are no initial sequents of this form in LOC , nor any 
w 

operational inference figures with a lower sequent of this form; thus, there is no possible Cut­

free derivation in LOC terminating in a sequent of the form -+- ,B. Hence, OC has NPl. 
w w 

Theorem 5. The inference figure Cut is elimtt1able from LOC + 11 - IA. 
w 

Proof: Only the following section of Gentzen 's proof needs to be reconsidered. 

3.113.3. As in Theorem 4, the possibility that the terminal symbol of M is I is precluded , 
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. . 
since rn LOC 

w 
11 - IA, a negated formula cannot occur in the succedent of a sequent as 

the principal formula of one of the operational inference figures. Hence , paragraph 3.113.35 

is simply omitted. 

Corollary. OCw + (11) has CP, DP and NPl. 

Proof: This proof is analogous to the proof of the Corollary to Theorem 4, except that 

Theorem 5 is invoked instead of Theorem 4. 

Theorem 6. The inference figure Cut is eliminable from LOC + 11 - IS. 
w 

Proof: Only the following section of Gentzen 's proof needs to be reconsidered. 

3.113.3. As in Theorem 4, the possibility that the terminal symbol of .M is I is precluded, 

since in LOC + 11 - IS, a negated formula cannot occur in the antecedent of a sequent as 
w 

the principal formula of one of the operational inference figures. Hence, paragraph 3.113.35 

is simply omitted. 

Corollary. OCw + (12) has CP, DP and NP2. 

Proof: This proof is analogous to the proof of the Corollary to Theorem 4, except that 

Theorem 6 is invoked instead of Theorem 4, and instead of the section on NP!, we have the 

following. 

NP2: If A is a theorem of OCw + (12) and· of the form , B, then in LOCw + 11 - IS there 

is a Cut-free derivation of -.. , B. There are no initial sequents of this form, so the only 

possible Cut-free derivatioi:i is one in which B is of the form I C and -.. I B (i.e. -.. II C) is 

derived by 11 - IS from -.. C. But then C is also a theorem of OCw + (12). Hence, OCw + 

(12) has NP2. 

Theorem 7. The inference figure Cut is eliminable from LNC (= LOC + 11 - IA + II -w w 

IS). 

Proof: Only the following section of Gentzen 's proof needs to be reconsidered. 

3.113.35. Suppose the terminal symbol of .M is I. Then the end of the derivation runs: 

r1 _.. A A , I'2 -+ B 
11-IS 11-IA 

I'l-+ -,, A -,-, A, I'2 -+ B 
mix. 

r1, r2 -+ B 
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This is transformed in to: 

r1 -+ A A , r2 -+ B 
mix 

r1 , r"' 2 -+ B 

r1 , I'2-+ B 
possi"bly several interchanges and th-inn£ngs. 

The new mix may be elimated by virtue of the induction hypothesis. 

Corollary. NC has CP, DP and NP2. w 

Proof: This proof is analogous to the proof of the Corollary to Theorem 6, except that 

Theorem 7 is invoked instead of Theorem 6. 

Theorem 8. The inference figure Cut is eliminable from LICw (= LOCw + 11 - IS+ NC). 

Proof: Only the following sections of Gentzen's proof need to be reconsidered. 

3.111. Suppose that the left-hand upper sequent of the mix is an initial sequent. Here the 

extra possibility arises that this initial sequent is of the form NC, so that the mix reads: 

-+ M 6 -+ B 

6* -+ B 

where M is of the form 1(A & 1A). Since the rank of the derivation in this case is supposed 

to be 2, the right-hand upper sequent 6 -+ B must be either an initial sequent or the lower 

sequent of a Thinning. (It cannot be the lower sequent of an operational inference figure, 

since 1(A & 1A) cannot be the principal formula of any operational figure of LICw). 

In the first case, 6 -+ B cannot also be of the form NC, since the mix formula must 

occur in the antecedent of this sequent; therefore , 6 -+ B must be the initial sequent M -+ M. 

But then the lower sequent of the mix, 6. * -+ B, is -+ M, which already has a derivation 

without a mix. 

In the second case, 6. -+ B is the lower sequent of a Thinning with upper sequent 6 1 -+ 

B. Since the rank of the mix is 2, 6 1 cannot contain M; t herefore, 6 * = 6 1 and there is 

already a derivation of 6. * -+ B without a mix. 

3.112. Suppose the right-hand upper sequent of the m1x is an initial sequent. The extra 

possibility that it is of the form NC does not arise, since the mix formula M must occur in the 

antecedent of this sequent. 
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3.113.35. This section is dealt with as in Theorem 6. 

Corollary. IC has CP, DP and NP3. 
w 

Proof: This proof is analogous to the proof of the Corollary to Theorem 6, except that 

Theorem 8 is invoked instead of Theorem 6, and instead of the section on NP2, we have the 

following. 

NP3: If A 1s a theorem of IC and of the form I B, then in LIC there is a Cut-free w w 

derivation of-+ --, B. The only possible Cut-free derivations of-+ 1 B are (i) a derivation in 

which -+ 1 B is an instance of NC, in which case B is of the form C & 1 C; and (ii) a 

derivation in which B is of the form I C and -+ 1 B (i.e. -+ 11 C) is derived by 11 - IS 

from-+ C, in which case C is also a theorem of ICw. Hence ICw has NP3. 

7. THEOREMS OF THE SUBSYSTEMS OF J 1 

The results of the preceding section enable us to determine more precisely the deductive 

strength of all but one of the subsystems of J 1 listed in Section 1. 

Theorem 9. The theorems of J0 are precisely those of OCw. A similar relationship holds also 

between the following pairs of systems: 

JO·l and ocw + (12) 

J0·2 and ocw + (11) 

J0 · 3 and IC w 

J0·5 and NC w 

Proof: The proof that follows is essentially the same as the proof of Theorem 1 of [7], the 

only substantial additions being those which deal with the negation properties of the 

axiomatic systems. As in [7], we interject a useful lemma. 

Lemma 1. If A is a theorem of OC w' then D :J A is a theorem of J 0, for any D £ l. A 

similar relationship holds between all of the pairs of systems listP,d in Theorem 9. 

Proof: The proof proceeds by induction on the length n of derivation of A in OCw. 

Base case (n = 1). In this case, A is an axiom of OCw. It is straightforward to verify that 
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each axiom of OCw is a theorem of J0. For each such A, it follows by -+ 2) and :J 1) that D:JA 

is also a theorem of J0, for any D E .C. 

Inductive step ( n = k for some k > 1: inductive hypothesis: if B is a theorem of OCw with 

derivation of length less than k, then D :) B is a theorem of JO for any D e: .C). In this case, A 

is derived in OCw from premisses B and B :) A by an application of (3). On inductive 

hypothesis, D :) B and D :) (B :) A) ·are theorems of J0 for any D e: .C. By &1) and two 

applications of -+ 5), (D :) B) & (D :) (B :) A)) is also a theorem, and hence by ::> 2) and -+
5
), 

so is D :J A. 

A similar proof can be given for each of the rema1n1ng pairs of systems listed in 

Theorem 9. 

Corollary. If B :) C is a theorem of OCw, then B :) C is a theorem of J
0

. A similar 

relationship holds between all of the pairs of systems listed in Theorem 9. 

Proof: Assume that B :) C is a theorem of OCw. Then by Lemma 1, D :J(B :) C) 1s a 

theorem of JO for any D e: .C. In particular, B :) (B :) C) is a theorem of J 0• Since B :) B is 

also a theorem, by -+1) and ::> 1), it follows that (B :) B) & (B ::>(B :) C)) is also a theorem, by 

& 1) and -+ 5), whence so is B:) C, by ::> 2) and -+5). 

A similar proof can be given for each of the remaining pairs of systems listed 1n 

Theorem 9. 

Proof of Theorem 9 ( continued): To show that every theorem of J0 is a theorem of OCw , it 

suffices to verify that all of the postulates of J0 are derivable in LOCw, from which the desired 

result follows by Theorem 3. This is easily verified, and a similar verification can be given for 

all of the remaining pairs of systems listed. 

To prove the converse, we assume that A is a theorem of OC and proceed by induction 
w 

on the number n of connectives in A. 

Base case ( n = 1 ). Evidently, the smallest number of connectives that a theorem A of OCw 

can have is one , in which case A = p :) p for some propositional variable p. It follows that A 

is a theorem of JO by the Corollary to Lemma 1. 

Inductive step ( n = k for some k > 1 · inductive hypothesis: if B is a theorem of OC with 
w 
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fewer than k connectives, then B is a theorem of J 0). We distinguish between the possible 

forms of A. 

(i) 

(ii) 

(iii) 

(iv) 

Suppose A is of the form B :) C. In this case, A is a theorem of J0 by the Corollary 
to Lemma 1. 

Suppose A is of the form B & C. In this case, both B and C are also theorems of 
OC , since OC has CP by the Corollary to Theorem 4. But each of B and C has w w 
fewer connectives than B & C; hence, on inductive hypothesis, B and C are both 
theorems of J0, from which it follows that B & C (i.e. A) is also a theorem of J0 by 
&1) and two applications of ~ 5). -

Suppose A is of the form B V C. In this case, at least one of B and C is also a 

theorem of OC , since OC has DP bv the Corollary to Theorem 4. But each of B w w • 
and C has fewer connectives than B V C; hence, on inductive hypothesis, at least one 
of B and C is also a theorem of JQ, from which it follows that B V C (i.e. A) is also a 
theorem of J0 by either V 1) or V 2J together with ~ 5). 

A cannot be of the form 1B, since OC has NP 1 by the Corollary to Theorem 4. w 

Paragraphs (i) to (iv) exhaust the possible forms of A; hence, it has been shown that if 

A is a theorem of OC w then A is also a theorem of J 0. 

To deal with the remaining pairs of systems listed in Theorem 9, it suffices to modify 

the above proof in the appropriate way for each pair. The only modification which requires 

explication is the alteration of paragraph (iv). 

For the pair J0 . 1 and OCw + (12), paragraph (iv) is replaced by the following: 

(iv)' Suppose A is of the form 1B. In this case, B is itself of the form 1C where C is a 
theorem of OCw + (12), since OCw + (12) has NP2 by the Corollary to Theorem 6. 
But C has fewer connectives than 11C, hence on inductive hypothesis, C is also a 
theorem of JO. t, from which it follows that 11C (i.e. A) is also a theorem of JO . 1 
by 1 1) and ~ 5J. 

For the pair J0 . 2 and OCw + (11), paragraph (iv) is not substantially altered, since 

OCw + (11), like OCw, has NP! by the Corollary to Theorem 5. 

For the pair J0 . 3 and ICw, paragraph (iv) is replaced by the following: 

(iv)" Suppose A is of the form 1B. In this case, B is either itself of the form 1C where C 
is a theorem of IC , or of the form C & -, C, since IC has NP3 by the Corollary to 

w w 
Theorem 8. The first subcase is dealt with as in paragraph (iv)', while in the second, 
A is of the form 1(C & -, C) and hence a theorem of J0 . 3 by 1 3). 

For the pair J0 . 5 and NCw, paragraph (iv) is replaced by a paragraph substantially 
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similar to paragraph (iv)' since NC has NP2 by th e Corollary to Theorem 7. 

Corollarv. J 0 and J
0

.
2 

have properties CP , DP and NP 1; J 0 . 1 and J 0 . 5 have CP , DP 

and NP 2 ; and J0 . 3 has CP , DP and NP 3. 

Proof: This follows from Theorem 9 and t he Corollaries to Theorems 4 t hrough to 8. 

Notably absent from the list of subsystems of J 1 considered in Theorem 9 is J0 . 4 , which 

is formed by adding postulate -\) to J0 . 2. It might be thought that the theorems of J0 . 4 

could likewise be shown to coincide with those of its apparently corresponding axiomatic 

system, Cw. Indeed, it might also be thought that the theorems of J 1 itself could similarly be 

shown to coincide with those of its apparently corresponding axiomatic system, NCw 

+ (10) + (13). Both of the systems Cw and NCw + (10) +( 13) were shown in Theorem 3 to be 

equivalent to their respective Gentzen formulations, LC and LNC +NC+ENL However, no w w 

proof of the eliminability of Cut from either of these Gentzen-style systems was given in 

Section 6. The following theorem shows why. 

Theorem 10. The inference figure Cut is not eliminable from either of the systems LC and 
w 

LNC + NC + EM. 
w 

Proof: It is straightforward to show that the sequent --+ 1A V A is derivable in both of these 

systems, even if neither --+ 1A nor --+ A is derivable. If Cut were eliminable, t hen there would 

be a derivation of this sequent in which Cut does not figure. But then -+ ,A V A would 

either be an initial sequent or be derived from either--+ 1A or --+ A by an application of V-IS. 

But there are no initial sequents of this form in either system, and it bas been assumed that 

neither --+ 1 A nor --+ A is derivable. Hence , Cut is not eliminable from either system. 

It was noted in Section 4 that systems incorporating ENI could equivalently be 

formulated with Curry 's rule Nx instead of ENL In fact , it can be shown that Cut is 

eliminable from such formulations. However , Nx is itself just a special form of Cut , and it is 

by no means obvious that such Cut-eliminability proofs would enable demonstrations that Cw 

and NCw +( 10) + (13) enjoy properties of any usefulness in proving the coincidence of their 

theorems with those of JO. 4 and J 1 respectively. As the final result of this section, we show 
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that such coincidence does not in fact obtain. 

Theorem 11. The theorems of J 0 . 4 (respectively, J 1) constitute a proper subset of the 

theorems of Cw (respectively, NCw ,(10)+(13)). 

Proof: That every theorem of J0 . 4 (J 1) is a theorem of Cw (N Cw +(10)+( 13)) can be 

st raightforwardly established as in Theorem 9. 

To prove that the converse does not hold , it suffices to exhibit a formula which is a 

theorem of Cw (and therefore also of NCw +( 10) +( 13)), but which is not a theorem of J 1 (and 

therefore also not of J
0 

.
4
). Such is the following: B V 1(.A. & (A :) B)). That t his is a 

theorem of Cw follows from the fact that, in this system, B is derivable from A & (A :) B), 

and so the theorem in question is derivable from (A & (A:) B)) V 1(A & (A:) B)), which is 

an instance of (10). That it is not a theorem of J 1 is established by the following argument. 

IfB V 1(A & (A:) B)) were a theorem of J 1 , then it would also be a theorem of J5 (see 

[4]). But the rule from ~ D V I C to C ~ D is derivable in J 5, as follows. Assume ~ D V 

1C. An instance of &
1

) is D V 1C, C ~ (D. V 1C) & C, so by ~
5

) , we have C -+- (D V 1C) 

& C. An instance of one of the distribution laws derivable in J 1 ( and therefore also in J 5) by 

Theorem 2 of [4] is (D V 1C) & C -+- (D & C) V (1C & C). Hence , by -.5) , we have C -+- (D 

& C) V (1C & C). But C & 1C -+- D is derivable in J 5 by Theorem 18 of [4], and hence so is 

1C & C -+- D; and an instance of & 2) is D & C -. D, so by V 4), we have (D & C) V (1C & 

C) -. D. This , together with C -+- (D & C) V (1C & C), suffices t o deliver C -. D by -.
5
). 

Thus, if B V 1(A & (A :) B)) were a theorem of J
5

, then A & (A :::l B) -. B would be 

derivable. But this sequent is not derivable in J5 , by Theorem 19 of [4]. 

8. DISTINCTNESS OF THE SUBSYSTEMS OF J 
1 

Theorem 12. The systems J 0 , J 0 . 1, J 0 . 2, J 0 . 3, J0 . 4, J 0 . 5 and J 1 are distinct. 

Proof: We begin by noting that none of the intuitionistic systems J0, J0 . 1 and J0 . 3 can be 

equivalent to any of the remaining systems, since these latter all incorporate intuitionistically 

invalid sequents as postulates. !v1oreover, these three systems are distinct : · J0 . 1 contains 

theorems of the form 11A (for any theorem A), but J
0 

has property NPl by the Corollary to. 

Theorem 9· and J0 . 3 contains theorems of the form 1(.A. & 1A), bu t J0 . 1 has NP2 by the 
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Corollary to Theorem 9. 

Similarly, the dualintuitionistic systems are distinct: J0 . 4 contains theorems of the form 

.. V 1A (where neither disjunct is a theorem), but J0 . 2 has DP by the Corollary to Theorem 

9. 

A similar argument shows that the intermediate systems J O. 5 and J 1 are also distinct. 

It remains to show that neither of the dualintuitionistic systems is equivalent to either of the 

intermediate systems. That J 0 . 2 is distinct from both J 0 . 5 and J 1 follows from the fact that 

both of the latter systems have theorems of the form 1A, but J0 . 2 has NP 1 by the Corollary 

to Theorem 9. That J O. 4 is distinct from JO. 5 follows again from the fact that the former has 

theorems of the form A V 1A (where neither disjunct is a theorem), while the latter has DP 

by the Corollary to Theorem 9. Finally, that J0 . 4 is distinct from J 1 follows from the fact 

that the latter contains theorems of the form 1(A & 1A), while the former does not, since by 

Theorem 11, its theorems form a subset of those of Cw, which lacks such theorems (see 

Theorem 3 of [17]). 

This concludes our investigation into the deductive strength of the subsystems of J 1 

introduced in this paper. An investigation into the suitability of these systems for 

paraconsistent purposes is undertaken in Chapter 4. 



Chapter Four: Paraconsistency and the Subsystems of J 1 

1. Ji(O ~ i ~ 1) AND THE P ARACONSISTENCY CONDITIONS 

The systems Ji(O ~ i ~ 1), defined in Chapter 3, are all subsystems of J1, the weakest of 

the J-systems originally constructed by Arruda and da Costa. As noted in Chapter 2, J 1 

satisfies the first of da Costa's conditions for paraconsistent systems: (I) from contradictory 

formulas A and IA, it must not be possible to deduce an arbitrary formula B. Because they 

are subsystems of J 1, it follows that the systems J /0 ~ i ~ 1) also satisfy this condition. 

However, it is also noted in Chapter 2 that J 1 does not satisfy the second of da Costa's 

conditions: (II) paraconsistent systems should contain most of the schemata and deduction 

rules of classical logic that do not interfere with (I). And even if, as suggested in Chapter 2, 

(II) is weakened to condition (II'), which allows substantial containment of intuitionistic 

schemata and rules as an alternative, it is still apparent that J 1 does not adequately meet this 

requirement. Again, because they are subsystems of J 1' it follows that the systems Ji( 0 ~ i· ~ 

1) also fail , to at least the same degree, to satisfy this second condition. 

The main ground for dissatisfaction with J 1 advanced in Chapter 2, both in terms of 

condition (II') and for independent reasons, is its failure to enjoy SE, the property of 

intersubstitutivity of provable equivalents. However, the attempts in Chapter 2 to extend J 1 

so as to secure SE proved to be unsatisfactory , in that the necessary additions collapse J 1 into 

J 5, which explicitly violates condition (I). Hence the suggestion that subsystems of J 1 be 

investigated, in the hope that such subsystems might either enjoy SE naturally or be 

amenable to extension so as to secure this property without similarly compromising (I). \Ve 

turn to the systems J/0 ~ £ ~ 1) to see whether this hope can be realised. 
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2. Ji(O ~ i ~ 1) AND THE PROPERTY OF INTERSUBSTITUTIVITY OF 

PROV ABLE EQUIVALENTS 

Theorem 1. The systems Ji(O ~ i ~ 1) do not enjoy the property SE. 

Proof: Easily derived in each Ji(O ~ i ~ 1) are the sequents A -+ A & A and A & A -+ A 

(abbreviated A +-+ A & A), and IA -+ IA. If these systems enjoyed SE, then 1(A & A) -+ 

IA, the result of substituting A & A for ( one occurrence of) A in IA -+ IA, would also be 

derivable. However the following matrices validate the postulates of each J/0 ~ i ~ 1), but 

invalidate 1(A & A) -+ IA when A is assigned the value O; hence, these systems do not enjoy 

SE. 

-+ / -:J 0 1 2 3 I A/& 0 1 2 3 V 0 1 2 3 

*O 0 1 2 3 3 0 1 1 2 3 0 0 0 0 0 

*1 0 0 2 3 2 1 1 1 2 3 1 0 1 1 1 

2 0 0 0 3 1 2 2 2 2 3 2 0 1 2 2 

3 0 0 0 0 0 3 3 3 3 3 3 0 1 2 3 

(The values O and 1 are designated; the value of -+A is the same as the value of A). 

As in Chapter 2, the obvious st rategies for securing SE are by adding the rules RC and 

EC respectively. Like the original J-systems, the systems Ji(O ~ i ~ 1) enjoy SE+, the 

property of intersubstitutivity of provable equivalents in negation-free contexts (see Lemma 2 

of Chapter 1 ). It follows that, for any extension of these systems (in the same vocabulary), 

the admissibility of either RC or,EC is sufficient to guarantee SE in full , and the admissibility 

of EC is also necessary. For each J ., the system formed by adding RC will be called RJ ., and 
'I. 'I. 

the system formed by adding EC will be called EJ .. 
'I. 

In Chapter 3, the systems J .(O ~ i ~ 1) were divided into three separate branches. It is 
. 'I. 

convenient to divide the extended systems RJi(O ~ i ~ 1) and EJi(O ~ i ~ 1) similarly: for 

each J ·, the systems RJ. and EJ . will be deemed to belong to the same branch as J .. In 
'I. 'I. 'I. 'I. 

particular, RJ0, EJ0, RJ 0_1, EJ0_1, RJ0_3 and EJ0_3 all belong to the 'intuitioni"stic branch 

( and since the rules RC and EC are intuitionistically derivable, these systems, like the 
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intuitionistic members of J -(0 ~ i ~ 1 ), have the property that any sequent derivable in them 
l . 

is intui tionistically derivable); RJ 0_2, EJ 0_2, RJ 0.4 and EJ 0.4 are duaiintuitionistic; and 

RJ0_5, EJ0 _5 and RJ 1 ( =EJ 1) are intermediate. (That RJ 1 = EJ 1 = J 5 is proved in Theorem 

7 of Chapter 2). 

The relations of containment holding between these systems are as set out below, with 

weaker systems placed below stronger ones. (That these systems are distinct will be shown in 

ection 7). 

RJ0.5 

~ 
EJ0.3 RJo.2 EJ0.4 

~ 
EJo.2 

For each of the three branches, we will determine the strongest member or members 

which satisfy condition (I), since these are also the most likely to satisfy (II'). For the J­

systems explicit satisfaction of (I) amounts to the underivability of the sequent A , 1A -. 

B. (Thus, RJ 1 and EJ 1 fail to satisfy (I), since they are equivalent to J 5, in which this sequent 

is derivable). We note, however, that a J-system can fail to satisfy (I) substantively , even if 

not explicitly. For example, the sequent A, 1A -. B :J C is derivable in the systems J2, J3 
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and J 
4 

even though A, 1A --+ B is not ( see Chapter 2). We shall therefore need to consider 

not only the latter sequent , but variants of it as well. 

3. THE INTUITIONISTIC BRANCH 

Theorem 2. In RJ 0_3 ( and therefore also in the remaining intuitionistic systems), neither of 

the following sequents is derivable: 

A , 1A ~ B 
A, 1A ~ B :J C. 

Proof: The following matrices validate the postulates of RJ 0_3, but invalidate the first 

sequent when A is assigned the value O and B is assigned the value 1, and the second when A 

and B are assigned the value O and C is assigned value 1. 

~ / :J O 1 

*O 

1 

0 1 

0 0 

-, 

0 

0 

( Only the value O is designated). 

/\ / & 0 1 

0 0 1 

1 1 1 

V O 1 

0 

1 

0 0 

0 1 

Thus, RJ 0 _3 appears to satisfy condition (I). However , not all is as prom1s1ng as it 

appears at first glance. 

Theorem 3. In RJ0_3 the following sequent is derivable: 

Proof: Applying --. 2) to postulate 1 3) yields B ~ 1(A & 1A), from which 11(A & 1A) ~ 

1B follows by RC. An instance of 1 1) is A & 1.A ~ 11(A & 1A) , which , t ogether with the 

above sequent, yields A & IA ~ 1B by ~ 5). From this, A, 1A --+ 1B follows by & 1) and 

The derivability of A, 1A ~ 1B can be seen to be ( at least) as substantive an 

infringement of (I) as is the derivability of A, IA ~ B :J C in some of the other J-systems. 

For an obvious consequence is that, for any inconsistent theory based on RJ 0_3, the negation 
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of every formula in the theory would also be in the theory. Thus such a theory would be 

thoroughly inconsistent; no part of it could reasonably be said to be ~locally consistent". 

The system RJ 0 _3, then, must be rejected as too strong for paraconsistent purposes. We 

turn instead to the weaker members of the intuitionistic branch. 

Theorem 4. In RJ 0.1, the sequent A, 1A ~ 1B is not derivable. More generally, the sequent 

A, 1A ~ ,nB is not derivable , where ,n represents any finite string of occurrences of 1. 

Proof: The following matrices validate the postulates of RJ0.1, but invalidate A, 1A ~ ,nB 

when A is assigned the value 1 and B is assigned whichever of O and 2 results in ,nB taking 

the value 2. 

~ / :J O 1 2 

*O 

1 

2 

0 1 2 

0 0 2 

0 0 0 

"l 

2 

1 

0 

(Only the value O is designated). 

/1. / & 0 1 2 

0 0 1 2 

1 1 1 2 

2 2 2 2 

V O 1 2 

0 0 0 0 

1 0 1 1 

2 0 1 2 

Thus, RJ0.1 appears to substantively satisfy (I), and therefore so do the weaker 

intuitionistic systems EJ0.1, RJ 0 and EJ0. However , EJ0.3 is not weaker than RJ0.1; this 

system must therefore be considered separately. 

Theorem 5. In EJ0_3, the sequent A, 1A ~ ,nB is not derivable. 

Proof: The following matrices validate the postulates of EJ0.3, but invalidate the above 

equent when A is assigned the value O and B is assigned the value 1. 

~ 0 1 2 3 "l :) 0 1 2 3 /1. / & 0 1 2 I) 

V 0 1 2 3 ,.) 

*O 0 1 2 3 0 0 0 0 0 0 0 0 1 2 3 0 0 0 0 0 

1 0 0 2 3 2 1 0 0 0 0 1 1 1 3 3 1 0 1 0 1 

2 0 1 0 3 1 2 0 0 0 0 2 2 3 2 3 2 0 0 2 2 

3 0 0 0 0 0 3 I 0 0 0 0 3 3 3 3 3 3 0 1 2 3 

(Only the value O is designated). 
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Thus, EJ0_3, like RJ0_1, appears to substantively satisfy (I). 

Whether these two systems satisfy (II') , however , is less clear. Certainly , they enjoy SE, 

and are therefore an improvement on most of the original J-systems and the subsystems Ji (O 

~ i ~ l ), at least insofar as the enjoyment of this property contributes to the satisfaction of 

(II') (see Chapter 2). However, they are in other respects fairly weak relative to classical and 

intui tionistic logic; in fact, they are subsystems not only of (a sequent-based formulation of) 

in tui tionistic logic, but also of the "minimal calculus" of Johansson ( see [8)) . But then, (II') 

does not require that paraconsistent systems approximate classical or intuitionistic logic 

unconditionally , but only insofar as satisfaction of (I) allows. And when it comes to 

approximating intuitionistic logic, at least, RJ0_1 and EJ0_3 are the strongest members of the 

intuitionisti·c branches of RJi(O ~ £ ~ l) and EJ/0 ~ i ~ 1) which substantively satisfy (I). 

A final remark about EJ0 _3 is in order. It follows from Theorem 5 that the rule RC is 

not admissible in EJ0_3, for if it were, then A, ,A -+- 1B would be derivable in this system, as 

in the proof of Theorem 3. While this has the desired consequence that EJ0_3 substantively 

satisfies (I) , it also means that this system fails to contain certain variants of t he sequent -+-

1(A & 1A) , even though this sequent is explicitly incorporated as a postulat e. 

Theorem 6. In EJ0_3, the following sequents are not derivable: 

-+- , ( ( A & 1A) & B) 

-+- 1X, where Xis any permutation and / or reassociation of (A & 1A) & B. 

Proof: The matrices in the proof of Theorem 5 invalidate these sequents when A is assigned 

the value O and B is assigned the value 1. 

As argued after presenting the same result for J 1 in Theorem 1 of Chapter 2, the 

absence of these sequents is not only anomalous in the presence of postulat e , 3), but also 

contrary to- at least the spirit of (II'). Of the systems EJ 0_3 and RJ0_1, t hen , the latter 
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presents itself as somewhat more attractive. 

4. THE DUALINTUITIONISTIC BRANCH 

Theorem 7. In RJ 0.4 ( and therefore also m the rema1n1ng dualintuitionistic systems) , the 

following sequents are not derivable: 

A, ,A-+ B 

A, ,A-+ B ~ C 

A, ,A -+ ,nB. 

Proof: The following matrices (adapted from those provided for CCw in [19]) validate the 

postulates of RJ 0.4, but invalidate these sequents. The first is invalidated when A is assigned 

the value 1 and B is assigned the value 2; the second when A is assigned the value 1, B is 

assigned the value O and C is assigned the value 2; and the third when A is assigned the value 

I and B is assigned whichever of O and 1 results in ,nB taking the value 2. 

-+/~ 0 1 2 

*O O 1 2 

1 0 0 2 

2 0 0 0 

' 2 

0 

0 

(Only the value O is designated). 

I\ / & 0 1 2 

0 0 1 2 

1 1 1 2 

2 2 2 2 

V O 1 2 

0 0 0 0 

1 0 1 1 

2 0 1 2 

Thus, RJ 0.4 appears to substantively satisfy (I). In investigating whether this system 

also satisfies (II'), we note firstly that J0.4 lacks the intuitionistic negation postulates , 1) and 

, 3), but instead includes their "duals", , 2) and ,
4

). In this sense, it can be said that what 

J 0.4 lacks from the intuitionistic point of view, it makes up for from the broader classical 

perspective. And with respect to the variants of -+ ,(A & ,A), it is at least more uniform 

than some of t he other J-systems investigated (see, for example, Theorems 1 and 2 of Chapter 

2 and Theorem 6 above). 

Theorem 8. In J0.4 , the following sequents are not derivable: 
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-+ ,(,A & A) 

-+ ,((A & ,A) & (A & ,A)) 

-+ ,((A & ,A) & B) 

-+ ,X, where X is any permutation and / or reassociation of (A & "lA) & B. 

Proof: The following matrices validate the postulates of J0.4, but invalidate these sequents 

when A and B are both assigned the value 0. 

*O 

*I 

2 

1 2 

0 0 2 

0 0 2 

0 0 0 

--, 
1 

2 

1 

A/ & 0 1 2 

0 0 1 2 

1 1 1 2 

2 2 2 2 

(Only the value 2 is not designated). 

V 

0 

1 

2 

0 1 2 

0 0 0 

0 1 1 

0 1 2 

Thus, J0.4 is itself reasonably attractive but for the fact that it does not enjoy SE, by 

Theorem 1. Addition of the rule RC, resulting in RJ0.4, suffices to secure this property 

without compromising condition (I), as shown in Theorem 7. It also has an interesting 

consequence concerning the sequents listed in Theorem 8. 

Theorem 9. In RJ0 .4, all of the sequents listed in Theorem 8 are derivable. 

Proof: We provide the derivation of only -+ ,(A & ,A); from this, the remaining sequents 

can easily be derived with the assistance of RC. 

An instance of postulate & 2) is A & ,A -+ A, and an instance of & 3) is A & ,A -+ ,A. 

Applying RC to these yields ,A -+ ,(A & ,A) and 11A -+ 1(A & 1A), whence "lA V 

11A -+ 1(A & "lA) follows by V 4). But the antecedent is an instance of 1 4), so by -+5) , we 

get the desired -+ , ( A & ,A). 

Thus, RJ 0.4 is as uniform in in~luding the sequents of Theorem 8 as J 0.4 is in excluding 

them. Moreover, Theorem 9 shows that RJ 0.4 differs from RJ 1 ( = J 5) only in not containing 

postulate 1 1); yet the former system substantively satisfies condition (I), while the latter 

explicitly violates it. It follows that RJ 0.4 also satisfies (II'), at least insofar as there is no 

system in RJi(O ~ ,i ~ l) or EJi(O ~ i ~ 1) which is stronger and which also satisfies (I). 
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As a final remark on RJ 0.4, we recall that the reason for dissatisfaction with its 

intuitionistic "dual", RJ 0_3, was that this system was shown in Theorem 3 to contain the 

sequent A, ,A -+ ,B. In particular , the instance A, 1A -+ 11B is derivable in RJ 0_3, 

though in the absence of the negation postulate , 2) , this is not quite sufficient to yield the 

unwanted A, ,A -+ B. It might be that a "dual" result holds for RJ0.4, similarly 

compromising its satisfaction of (I). The following presents itself as such. 

Theorem 10. In RJ0.4, the sequent ,,(A & ,A) -+ Bis derivable. 

Proof: From -+ 1(A & ,A), shown to be derivable in RJ 0.4 in Theorem 9, ,B -+ 1(A & 

,A) follows by -+2). Applying RC yields 11(A & ,A) -+ 11B, from which the sequent 

follows by , 2) and -+5). 

Again, in the absence of the negation postulate 1 1), this is not sufficient to yield the 

unwanted A, "lA -+ B. However, there is no reason to consider the sequent of Theorem 10 to 

be as undesirable as its "dual", A & "lA -+ 11B. For the presence of the latter in an 

inconsistent theory ensures virtual collapse; but the presence of the former need have no such 

consequence, unless of course 11(A & "lA) is derivable from A & "lA in the theory. Thus, 

Theorem 10 does not indicate that the satisfaction of (I) by RJ 0.4 is significantly 

compromised. 

5. THE INTERMEDIATE BRANCH 

As noted earlier, RJ 1 (= EJ1) violates condition (I) explicitly; however 1 RJ0_5 1s more 

satisfactory. 

Theorem 11. In RJ0 _5 (and therefore also in EJ0 _5), the sequents listed in Theorem 7 are not 

derivable. 

Proof: The matrices 1n the proof of Theorem 4 validate the postulates of RJ0_5, but 

invalidate these sequents. The first is invalidated when A is assigned the value 1 and B is 

assigned the value 2; the second when A is assigned the value 1, B is assigned the value O and 

C is assigned the value 2; and the third as in the proof of Theorem 4. 
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Thus , RJ
0

_
5

, appears to substantively satisfy (I). Moreover , like RJ 0 .4 , it offers a 

uni form t reatment of the sequents listed in Theorem 8. 

Theorem 12. In RJ 0_5, none of the sequents listed in Theorem 8 is derivable. 

Proof: The matrices in the proof of Theorem 4 validate the postulates of RJ0 ~, but 
. ::> 

invalidate these sequents when A is assigned the value 1 and B is assigned the value 0. 

Finally RJ0_5 also satisfies (II') , at least insofar as t here is no system in RJi(O ~ i" ~ 1) 

or EJi (O ~ ,,: ~ 1) which is stronger and which also satisfies (I) , for the addition of either 1 3) 

or 1 4) to RJ 0 ,5 collapses this system into RJ 1. 

Proof: That RJ 0,5 + , 4) = RJ 1 follows from the fact that the former syst em contains RJ0.4, 

in which--+ 1(A & 1A) , i.e. 1 3), is derivable by Theorem 9. But RJ0_5 + 1 4) + 1 3) = RJ 1. 

To show that RJ 0_5 + 1 3) == RJ 1, it suffices to derive 1 4) in the former system. The 

derivation is as follows. An instance of V 1) is A --+ A V 1A, which by RC yields 1(A V 1A) 

--+ 1A. Similarly, 1(A V 1A) --+ 11A results by V 2) and RC. These two sequents yieJd 1(A 

V ,A) --+ ,A & 11A by &
1

) and two applications of --+
5
). Applying RC again yields 1(1A 

& 11A) --+ 11(A V 1A). But the antecedent is an instance of 1 3); hence --+ 5) yields --+ 

11(A V ,A). From this, -+AV ,A, i.e. , 4), follows by 1 2) and --+ 5). 

We note that the results of this section have a bearing on whether the intuitionistic 

system RJ 0 _1 really satisfies (II'); for it is now apparent that t here is a stronger system, 

namely RJ 0_5, which also substantively satisfies (I). However, RJ 0_1 retains its interest as t he 

strongest in t uitionistic system in RJ,£(0 ~ £ ~ l ) which satisfies (I). 

6. AXI01\1ATIC FORMULATIONS 

In Theorem 9 of Chapter 3, it is shown for most of the syst ems Ji(O ~ £ ~ 1) t hat the 

theorems of each coincide with t hose of an axiomatic counterpart . In this section , we 

investigate whether similar results can be obtained for RJi(O ~ £ ~ 1) and EJi(O ~ i ~ 1). 
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The appropriate forms of t he rules RC and EC for axiomatic systems are th e following: 

Ax.RC 
C-:JD 

1D-:J1C 
Ax.EC 

where C = D abbreviates ( C -:J D) & (D -:J C ). 

The names ROCw and EOCw will be used to denote the systems respectively formed by 

adding Ax.RC and Ax.EC to OCw ; and similarly for the remaining axiomatic systems studied 

in Chapter 3. (We note that in 19], ROCw and RCw are called, respectively , CC and CCw) . 

As in Chapter 3, we can provide Gen tzen-sty le formulations of these axiomatic systems. 

For present purposes , it is simplest just to add the rules RC and EC, respectively , t o the 

Gentzen-style systems introduced in Chapter 3. The resulting systems will be denoted 

LROC , LEOC , etc. w w 

An initial equivalence between the axiomatic and the Gentzen-style systems 1s easily 

established. 

Theorem 14. The systems LROCw and ROCw are equivalent in the following sense: (i) if 

Ap···,An-+ B (respectively,-+ B) is a derivable sequent in LROCw , then (A1 & ... & An) -:J 

B (respect ively, B) is a theorem of ROCw; and (ii) if B is a theorem of ROCw, then -+ B is a 

derivable sequent in LROC . Similarly equivalent are the following pairs of systems: 
w 

LEOC w and EOC · 
w' 

LROC + ii - IA 
w and ROCw + (11); 

LEOC + ii - IA w and EOCw + (11); 

LROC ii - IS 
w and ROCw + ( 12); 

LEOC + 11 - IS w and EOC + (12); 
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LRIC 
w 

and RIC; 
w 

LEIC w 
and EIC; 

w 

LRNC 
w 

and RNC ; 
w 

LENC w 
and ENC· w' 

LRC w 
and RC ; 

w 

LEC w 
and EC· w' and 

LRNCW +NC+ EM(== LENCW +NC+ EM) 

and RNCw + (10) + (13) (== ENCw + (10) + (13)). 

(We note that the members of this last pair are respectively, a sequent-based and an 

axiomatic formulation of classical logic). 

Proof: The proof is by induction on length of derivation, as in the proof of Theorem 3 of 

Chapter 3. We need to consider only the additional cases in which RC and Ax.RC, or EC and 

Ax.EC, are involved 

In proving (i), we consider the case in which a sequent 1B -+ 1A is derived in LROCw 

from A -+ B by RC. On inductive hypothesis, A :) B is a theorem of ROC , to which Ax.RC w 

can be applied to yield 1B :) 1A. 

In proving (ii), we consider the case in which 1B :) 1A is a theorem of ROCw and is 

derived by Ax.RC from A :) B. On inductive hypothesis, -+ A :) B is derivable in LROC . 
w 

But A :) B, A -+ B is also derivable in LROCw; hence, Cut can be applied to yield A -+ 

B. Application of RC yields 1B -+ 1A, from which the desired -+ 1B :) 1A follows by :) -IS. 

A similar proof can be constructed for the remaining pairs involving RC and Ax.RC; 

and analogously for those involving EC and Ax.EC. 

We now consider the relationship between the J-systems and the axiomatic systems. 

Theorem 15. The theorems of RJ 0 constitute a proper s~bset of the theorems of ROCw. A 

similar relationship holds also between the following pairs of systems: 
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and EOC · w' 

and ROCw + (12); 

and EOCw + (12); 

and ROCw + (11 ); 

and E OC w + ( 11 ); 

and RIC; w 

EJ0.3 and EIC; w 

RJ0.4 and RC ; w 

EJ0.4 and EC ; 
w 

RJo.s and RNC ; w 

and ENC ; and w 

and RN Cw + (10) + ( 13) ( = classical logic). 

Proof: To show t hat every theorem of RJ0 is a theorem of ROCw, it suffices to verify that all 

of the postulates of RJ 0 are derivable in LROCw, from which the desired result follows by 

Theorem 14. This is easily verified, and a similar verification can be given for all of the 

remaining pairs of systems listed. 

To show that the converse does not hold , it suffices to exhibi t, for each pair of systems, 

a theorem of the axiomatic system which is not a theorem of the corresponding J-syst em. 

For the following pairs, a single argument will suffice: 

and ROC ; w 

and EOC ; w 
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RJO.l and ROCw + (12); 

EJO. l and EOCw + (12); 

and ROCw + (11); 

and EOCw + (11); 

and RNC ; and 
w 

and ENC . 
w 

For all of the above axiomatic systems -- indeed, for all of those listed in Theorem 15 --

the following are theorems: ((A :J A):) A) :J A and A :J ((A :J A) :J A). Hence, by Ax.RC or 

Ax.EC as appropriate, so is 1A :J 1( (A :) A) :J A). The following matrices, however, show 

that this is not a theorem of any of the eight J-systems listed above, for they validate the 

postulates of these systems, but invalidate -+ 1A :J 1( ( A :J A) :J A) when A is assigned the 

value 1. 

-+ 0 1 2 3 ' :) 0 1 2 3 /\ / & 0 1 2 3 V 0 1 2 3 

*O 0 1 2 3 3 0 0 0 2 3 0 0 1 2 3 0 0 0 0 0 

1 0 0 2 3 2 1 0 0 2 3 1 1 1 2 3 1 0 1 1 1 

2 0 0 0 3 1 2 0 0 0 3 2 2 2 2 3 2 0 1 2 2 

3 0 0 0 0 0 3 0 0 0 0 3 3 3 3 3 3 0 1 2 3 

(Only the value O is designated). 

For the pairs RJ0.4 and RCw, and EJ0.4 and ECw, exactly the same argument holds, 

except that in the matrices presented, the negation table is replaced by the following: 

' 0 3 

1 0 

2 0 

3 0 

(Alternatively, the proof of Theorem 11 of Chapter 3 can be straightforwardly adapted t o 

cover these pairs, as well as the pair RJ 1 and RNCw + (10) + (13). There it is shown that B 

V 1(A & (A :J B)) is a theorem of C ; hence, it is also a theorem of RC , EC and RNC + w w w w 

(10) + (13). But it is also shown to not be a theorem of J5 (= RJ 1); hence, it is also not a 
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t heorem of RJ0 .4 or EJ0.4, which are subsystems of J 5). 

A final argument applies to those pairs that remain , as well as to some of those already 

considered: 

RJ0.5 

EJo.s 

RJ . 
1 

and ROCw + (12) ; 

and EOCw + (12); 

and RIC; 
w 

and EIC i 
w 

and RNC ; 
w 

and ENC ; and w 

and RNC~ + (10) + (13). 

For all of the above axiomatic systems -- indeed, for all of those listed in Theorem 15 --

the following are theorems: ((A :J A) :J 1(A :J A)) :J 1(A :J A) and 1(A :J A) :J ((A :J A) :J 

1(A :J A)). Hence, by Ax.RC or Ax.EC as appropriate, so is 11(A :J A) :J 1((A :J A) :J 

1(A :J A)). But all of the above axiomatic systems incorporate (12); hence, 11(A :J A) is a 

theorem of these systems and, therefore, so is 1((A :J A) :J 1(A :J A)). The following 

matrices , however , show that this is not a theorem of any of the J-systems listed in Theorem 

15, for they validate the postulates of all of these systems, but invalidate -+ 1((A :J A) :J 

1(A :J A)) for all assignments to A. 

-+ 0 1 i :) 0 1 A/ & 0 1 V 0 1 

*O 0 1 1 0 0 0 0 0 1 0 0 0 

1 0 0 0 1 0 0 1 1 1 1 0 1 

(Only the value O is designated). 

This concludes the proof of Theorem 15. 

There is, then, no coincidence between the t heorems of any of the J-systems under 
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investigation and those of their axiomatic counterparts. The question arises how the J­

systems can, and whether they should, be further augmented so that such coincidence obtains. 

An initial step towards securing such coincidence might be to add to each J- system as a 

new postulate that axiomatic theorem shown to be missing from its stock of theorems. 

However, there is no guarantee that this would suffice; for it is likely that further formulas 

provable in the axiomatic system but not in the corresponding J-system would be discovered. 

A more attractive strategy is to ascertain which more general principles~ particularly those 

governing negation, are shown by Theorem 15 to be still lacking from the J-systems. 

Consider, for example, those systems shown in Theorem 15 to lack--+ "lA :J ,((A :J A) 

:J A). This is despite the fact that the sequents -+((A :J A) :J A) :J A and--+ A :J ((A :J A) :J 

A) can easily be derived in these systems. What is needed to derive --+ "lA :J 1( (A :J A) :J A) 

from the first of this pair is not RC, but the rule called :J RC :J in Chapter 2: 

--+C:JD 
:J RC :J 

--+1D:J1C 

Similarly, what is needed to derive--+ ,A :J ,((A :J A) :J A) from both sequents is not 

EC, but the following: 

--+C=.D 
:J EC :J 

--+ 1D:J1C 

It is immediate from Theorem 15 that neither of these rules IS admissible In those J-

systems lacking--+ ,A :J ,((A :J A) :J A). 

Of course, :J RC :J and :J EC :J are just the respective correlates of Ax.RC and Ax.EC 

as they might appear in a sequent-based system like the J-systems or the Gentzen-style 

systems presented earlier. In fact, because these Gentzen-style systems have modus ponens as 

a derivable rule (in the form: from --+ A and --+ A :J B, infer ~ B), the presence of RC is 

sufficient also for the derivability of :J RC :J, and the presence of EC is sufficient also for the 

derivability of :J EC :J. The J-systems, on the other hand, lack modus ponens, so t he 

presence of RC or EC is not in general sufficient for the derivability , or even the admissibility , 
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of :J RC :J or :) EC :J. (We note that in the systems J 2 to J 5 , :J RC :, and :J EC :J are 

derivable, but this is due to the presence of postulate , 5) rather than RC or EC, which are 

derivable only in J 
5

). 

Thus, although RC and EC guarantee the desired intersubstitutivity property SE, they 

do not suffice in the context of the J-systems to properly reflect the incorporation of Ax.RC 

and Ax.EC into the axiomatic systems. To achieve this, it seems that :) RC :) would need to 

be further added to those J-systems incorporating RC, and :J EC :, to those incorporating 

EC. 

Even if such additions were made, however, there is still no guarantee that coincidence 

of theorems would obtain. For consider those J-systems shown to lack the sequent ~ 1( ( A :) 

A) :) "l(A :J A)) in Theorem 15; among them, some of those in which :) RC :) and :) EC :) 

have just been noted to be inadmissible. Even if these rules were added to the J-systems as 

suggested, there is no reason to believe that the above sequent would then be derivable. 

What is needed to derive this sequent in the J-systems seem to be something more like 

postulate 1 7) of J 3: A, 1B ~ ,(A :J B). And to secure ~ B V "l(A & (A :) B)) for the 

systems RJ0.4, EJ0.4 and RJ 1, a different addition again would seem to be required. 

But it has not yet been established that augmenting the J-systems so as to achieve a 

coincidence between their theorems and those of their axiomatic counterparts is at all 

desirable. Among the systems for which such augmentation has been considered are RJ0_1, 

RJ 0 .4 and RJ 0_5, the most likely candidates among all the J-systems to simultaneously enjoy 

SE and satisfy both of da Costa's conditions for paraconsistency. But it may be that 

augmenting these systems in order to secure such coincidence would also compromise their 

satisfaction of condition (I), in which case such augmentation would be clearly undesirable. 

On the other hand, if satisfaction of (I) is not thereby compromised, then condition (II') 

virtually enjoins us to so augment them. 
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The following result indicates which way this question will be resolved. 

Theorem 16. If the rule :J RC :J is added to each of t he systems RJ0_1, RJ 0 .4 and RJ 0_5, the 

following sequents are still not derivable: 

A, ,A-+ B 

A, "lA-+ B :JC 

A, "lA-+ ,nB. 

Proof: The matrices in the proof of Theorem 4, which validate the postulates of RJ 0_1 and of 

RJ0_5 but invalidate the above sequents, and those in the proof of Theorem 7, which validate 

the postulates of RJ0 _4 but similarly invalidate these sequents, also validate :J RC :J. 

The rule :J RC :J, then, can be added to the systems RJ0.1, RJ 0.4 and RJ0_5 without 

compromising their satisfaction of (I). Similarly, it can be verified that these matrices 

validate also , 7 ); this too can be added. Further, the matrices of Theorem 7 validate --+ B V 

,(A & (A :J A)); this sequent also can be added to RJ0.4 without compromising condition (I). 

The logical conclusion of this line of argument can quickly be established, for another 

sequent which is validated by the matrices referred to in the proof of Theorem 16 is A, A :J B 

--+ B. The effect of adding this sequent to the J-systems is to restore modus ponens , thereby 

collapsing these systems into the Gentzen-style equivalents of their axiomatic counterparts. 

While this neatly solves the problem of augmenting the J-systems so that their theorems 

coincide with those of their axiomatic counterparts , it does so at the expense of continued 

interest in the former, for we might as well dispense with the J-systems so augmented in 

favour of their more simply formulated axiomatic and Gentzen-style equivalents. Accordingly , 

a more detailed investigation of the latter systems ( and their extensions) is undertaken in the 

next two chapters. 

However, it would be premature to discard the J-systems outright, for the underivability 

of the sequents of Theorem 16 is only an indication, not a guarantee, of the satisfaction of (I); 
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it might be that the restoration of modus ponens to RJ 0_1, RJ 0 .4 and RJ 0_5 would precipitate 

in some as yet unforseen way the substantive collapse of certain otherwise stable inconsistent 

theories oased on these three systems. 

7. DISTINCTNESS OF THE SYSTEMS 

We conclude by showing that the systems occurring in the diagram in Section 2 are in 

fact distinct. We show firstly that the three branches are disjoint. 

Theorem 17. No system occurring m the diagram in Section 2 is both a member of the 

intuitionistic branch and also a member of either the dualintuitionistic or the intermediate 

branch. 

Proof: This is immediate from the fact that every system occurring in the diagram which is a 

member of either of the latter two branches incorporates the intuitionistically underivable 

postulate 1 2). 

Theorem 18. No system occurring 1n the diagram in Section 2 IS both a member of the 

dualintuitionistic and the intermediate branch. 

Proof: Every system in the diagram which IS a member of the intermediate branch 

incorporates 1 1) as a postulate. However, the matrices in the proof of Theorem 7 validate 

the postulates of RJ 0.4 ( and therefore also of every other member of the dualintuitionistic 

branch), but invalidate 1 1) when A is assigned the value 1. 

Theorems 17 and 18 suffice to establish that the three branches of systems occurring in 

the diagram in Section 2 are disjoint. We now show that the systems belonging t o each 

branch are distinct. 

Theorem 19. The intuitionistic systems RJ 0, EJ0, RJ 0_1, EJ0 _1, RJ0 _3 and EJ0 _3 are distinct. 

Proof: That RJ 0 is distinct from RJ 0_1 and that EJ 0 is distinct from EJ0 _1 are established by 

the following matrices, which validate the postulates of RJ 0 (and therefore also of EJ0), but 

invalidate postulate 1 1) of RJ 0_1 and EJ0_1 when A is assigned the value 0. 



~ / -:J 0 

*O 

1 

0 

0 

1 

1 

0 

-, 

1 

1 

(Only the value O is designated). 

/\ / & 0 

0 0 

1 1 

1 

1 

1 
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V 

0 

1 

0 

0 

0 

1 

0 

1 

That RJO.l is distinct from RJ0.3 and that EJ0_1 is distinct from EJ0_3 are established 

by the matrices in the proof of Theorem 4, which validate the postulates of RJ 0.1 (and 

therefore also of EJ0.1), but invalidate postulate 1 3) of RJ 0_3 and EJ0_3 when A is assigned 

the value 1. 

That EJ 0 is distinct from RJ0 and that EJ0_1 is distinct from RJ0 _1 are established as 

follows. The sequent 1A -+ -, (A & B) is derivable in RJ0 and RJ0_1 by one application of 

RC to postulate &2). However, that it is not derivable in EJ0 or EJ0 _1 is established by the 

first set of matrices occurring in this proof, with the modification that the negation-table is 

replaced by the following: 

-, 
0 0 

1 1 . 

The matrices thus modified validate the postulates of EJ0_1 (and therefore also of EJ0), but 

invalidate 1A-+ -, (A & B) when A is assigned the value O and Bis assigned the value 1. 

Finally, that EJ0.3 is distinct from RJ0_3 follows from the fact that the sequent A, 1A 

-+ 1B is derivable in RJ0.3 by Theorem 3, but is not derivable in EJ0.3 by Theorem 5. 

These observations suffice to establish that the systems listed in Theorem 19 are 

distinct. 

Theorem 20. The dualintuitionistic systems RJ0 _2 , EJ0 _2, RJ 0 .4 and EJ0 .4 are distinct. 

Proof: That _RJ 0 _2 is distinct from RJ0 .4 and that EJ 0 _2 is distinct from EJ0 .4 are established 

by the matrices in the proof of Theorem 4, which validate the postulates of RJ 0_2 (and 

therefore also of EJ0 .2), but invalidate postulate 1 4) of RJ0 .4 and EJ0 .4 when A is assigned 

the value 1. 

That EJ0 .2 is distinct from RJ
0

_
2 

is established by the fact that the sequent ,A -+ -, (A 
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& B) is derivable in RJ 0_2 by one application of RC to postulate & 2), but is not derivable in 

EJ0_2, since the modified matrices in the proof of Theorem 19 validate the postulates of EJ0_2, 

but invalidate 1A --+ 1 (A & B) as in that proof. 

Finally, that EJ 0.4 is distinct from RJ 0.4 is established by the following matrices, which 

validate the postulates of EJ0.4, but invalidate the sequent --+ 1 (A & 1A), shown to be 

derivable in RJ0.4 in Theorem 9, when A is assigned the value 1. 

--+ / -:J 0 1 2 3 4 5 6 7 -, 
*O . Q 1 2 3 4 5 6 7 7 

1 0 0 2 3 2 3 6 6 2 

2 0 1 0 3 1 5 3 5 5 

3 0 1 2 0 4 1 2 4 4 

4 0 0 0 3 0 3 3 3 3 

5 0 0 2 0 2 0 2 2 2 

6 0 1 0 0 1 1 0 1 0 

7 0 0 0 0 0 0 0 0 0 

/\ / & 0 1 2 3 4 5 6 7 V 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0 

1 1 1 4 5 4 5 7 7 1 0 1 0 0 1 1 0 1 

2 2 4 2 6 4 7 6 7 2 0 0 2 0 2 0 2 2 

3 3 5 6 3 7 5 6 7 3 0 0 0 3 0 3 3 3 

4 4 4 4 7 4 7 7 7 4 0 1 2 0 4 1 2 4 

5 5 
,.. 

7 5 7 5 7 7 
,.. 

0 1 0 3 1 3 5 ~ ~ ~ 

6 6 7 6 6 7 7 6 7 6 0 0 2 3 2 3 6 6 

7 7 7 7 7 7 7 7 7 7 0 1 2 3 4 
,.. 

6 7 ~ 

(Only the value O is designated). 

These observations suffice to establish that the systems listed 
. 

Theorem 20 are 1n 

distinct. 

Theorem 21. The intermediate systems RJ 0_5, and EJ0_5 and RJ 1 (= EJ 1) are distinct. 

Proof: That RJ O.S is distinct from RJ 1 is established by the · matrices in the proof of Theorem 

4, which validate the postulates of RJ0 _5, but invalidate pestulate 1 3) of RJ 1 when A is 

assigned the value 1. 
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That EJ0 _5 is distinct from RJ 0_5 is established by the fact that the sequent 1A -+ 1 (A 

& B) is again derivable in RJ 0_5 but not in EJ0.5, since the modified matrices in the proof of 

Theorem 19 validate the postulates of EJ0_5, but invalidate 1A -+ 1 (A & B) as in that 

proof. 

These observations suffice to establish that the systems listed rn Theorem 21 are 

distinct. 

Theorems 17 through to 21 together suffice to establish that all of the systems occurring 

in the diagram in Section 2 are distinct. 



Chapter Five: Paraconsistency and the C-Systems 

1. THE C-SYSTEMS AND THE P ARACONSISTENCY CONDITIONS 

In discussing the C-systems in [9], da Costa states that ~it seems natural that they 

satisfy" not only (I) and (II), but also the following: 

(III) in these systems, the schema 1(A & 1A) must not be derivable; and 

(IV) it must be simple to extend the systems to predicate calculi ( with or without equality) 

of first order. 

As noted in Chapter 2, (I) is unanimously accepted as a necessary condition for 

paraconsistent systems; and (IV) is also uncontroversial, if only because paraconsistency 

researchers have standardly sought to guarantee the stability of their systems under the 

burden of inconsistency at the propositional level, rather than by tampering with the usual 

(classical) rules governing the quantifiers. Like (II), however, condition· (III) is not so 

generally endorsed. Certainly, the construction of paraconsistent logics incorporating 1(A & 

1A) is not unusual, even in Brazilian circles, as the J-systems of Arruda and da Costa testify. 

Even if all four conditions are accepted, however, it is not absolutely clear that they are 

all satisfied by the C-systems. Conditions (I) and (III) present no problem, for 1(A & 1A) is 

indeed not derivable in Cn(l ~ n ~ w), nor is an arbitrary proposition B derivable from 

contradictory formulas A and 1A. And the first-order extension of the systems, as described 

in [9], is evidently simple enough to satisfy (IV). Rather , it is with respect to (II) that some 

room for doubt emerges. 

As with the J-systems , the reason for this doubt is that t he C-systems similarly fail to 

enjoy SE, the property of intersubstitutivity of provable equivalents. (This is noted in [11], 
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Corollary to Theorem 1). This failure is investigated more precisely in the following section. 

2. THE C-SYSTEMS AND THE PROPERTY OF 
INTERSUBSTITUTIVITY OF PROV ABLE EQUIVALENTS 

For convenience, we restate the postulates of C : w 

(1) A :J(B :J A) 

(2) (A :J B) :J ((A :J (B :JC)) :J (A :JC)) 

A A:JB 
(3) 

B 

( 4) (A & B) :J A 

(5) (A & B) :J B 

(6) A :J (B :J(A & B) 

(7) A :J (A V B) 

(8) B :J (A V B) 

(9) (A :JC) :J ((B :JC) :J ((AV B) :JC)). 

(10) AV ,A 

(11) 11A :J A. 

We note that, by Theorem 1 of [11), sufficient to collapse Cw into C0 (classical logic) is 

addition of the reduct£o schema, (A :J B) :) ((A :J ,B) :J ,A). The remaining systems Cn(l 

~ n < w) extend Cw by adding this schema, though in a qualified fashion rather than 

s£mp/,ic1.·ter. For each system, the schema is qualified by a formula which can be interpreted 

as expressing the proposition that B is not paradoxical , or " behaves classically". For C1, the 

qualification is the formula B0
, which is defined as ,(B & ,B). In addition, compounding 

principles ensure that compounds of "classical" formulas are themselves "' classical". 
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The postulates of C1 are those of Cw together with the following: 

(12)0 B0 :)((A:) B) :J (( A:) 1B):) 1A)) 

(13) 0 (AO & B0
) :) (A & B) 0 

(14) 0 (AO & B0
) :) (AV B)0 

(15) 0 (A O & B0
):) (A:) B) 0 

(16) 0 B0
:) (1B) 0

• 

For each remaining Cn(l ~ n < w), B0 is replaced by B(n), which is the conjunction Bn 

& Bn-l & ... & B1, where B1 = B 0 and B'i = B ~-t··.0 . (For completeness, B(l) is defined to 
i imes 

The postulates of Cn(l < n < w) are those of C1, except that (12) 0 to (16) 0 are replaced 

by the following: 

(12)(n) B(n) :J ((A:) B) :)((A:) 1B):) 1A)) 
. 

(13) (n) (A(n) & B(n)):) (A & B)(n) 

(14) (n) (A(n) & B(n)) :) (AV B)(n) 

(15) (n) (A (n) & B(n)):) (A:) B)(n) 

(1 6) (n) B(n ) :J (1B)(n). 

By Theorem 9 of [9], the systems C0,C1,C 2, .... ,Cw are all distinct and form a linear 

hierarchy with strongest member C0 and weakest member Cw. 

We now turn to SE, the property of intersubstitutivity of provable equivalents. For 

axiomatic systems like the C-systems, it is most natural to define two formulas B and C to be 

provably equ,ivalent just in case (B :) C) & (C :) B), abbreviated B = C, is derivable. (We 
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note that this is not the only sort of equivalence definable in these systems; other definitions 

are given in [14]) . SE, then, is the property that, where B is a subformula of a theorem A, 

and C is a formula which is provably equivalent to B the result of substituting C for some or 

all occurrences of B in A is also a theorem. 

Because the C-systems incorporate positive intuitionistic logic, they at least enjoy the 

property of intersubstitutivity of provable equivalents in negation-free contexts (SE+). It is 

where negation is involved that intersubstitutivity fails, as the following result shows. 

Theorem 1. The systems Cn(l ~ n ~ w) do not enjoy SE. 

Proof: Easily derived in Cw, and therefore in each Cn(l ~ n ~ w), are the schemata A= (A & 

A) and 1A :) 1A. If Cn(l ~ n ~ w) enjoyed SE, then 1A :) 1(A & A), the result of 

substituting A & A for (one occurrence of) A in IA:) 1A, would also be derivable. However, 

the following matrices show that 1A:) 1(A & A) is not derivable in Cn(l ~ n ~ w), for they 

validate the postulates of these systems, but invalidate this schema when A is assigned the 

value 1. 

:) 0 1 2 3 4 I & 0 1 

*O 0 1 2 3 4 4 0 0 1 

*l 0 0 2 3 4 3 1 1 0 

2 0 0 0 3 3 3 2 2 2 

3 0 0 2 0 2 2 3 3 3 

4 0 0 0 0 0 0 4 4 4 

(Only the values O and 1 are designated). 

A much sharper result can be obtained for C . 
w 

2 3 4 V 0 1 2 3 4 

2 3 4 0 0 0 0 0 0 

2 3 4 1 0 1 1 1 1 

2 4 4 2 0 1 2 0 2 

4 3 4 3 0 1 0 3 3 

4 4 4 4 0 1 2 3 4 

Theorem 2. In C , the schema 1B w 1C is derivable if and only if B and C are the same 

formula. 

Proof: The proof proceeds by considering the Gentzen-style system WGw of [16], which is 

stronger than C in that, while for every formula A :) B derivable in C the sequent A -+ B is w w 

derivable in WGw, the converse does not hold. (The terminology used in this proof is that of 

.......... 
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Gentzen's [121) . 

We note firstly that the inference figure Cut is proved in [16] to be eliminable from 

W G , and that the system is shown to be not finitely trivialisable, i.e. there is no formula B 
w 

such that B ~ C is derivable for an arbitrary formula C. From this, it follows that WG has 
w 

no derivable sequent of the form ~ 1B. For WG has no initial sequents of this form; hence, w 

such a sequent could only be derived by the inference figure 1-IS from the sequent B ~ . But 

from the latter, B ~ C follows by Thinning in the succedent for an arbitrary formula C, 

contradicting the fact that WG is not finitely trivialisable. Hence, WG has no derivable 
w w 

sequent of the form ~ 1B. 

We now show by induction on the length of derivation in WG that, if I'~ 1B is a 
w 

derivable sequent, then 1B is a (possibly improper) subformula of some member of I'. 

Base case. In this case, I'~ 1B is an initial sequent of the form 1B ~ 1B. Of course, 1B is 

a subformula of itself. 

Inductive step. In this case, I'~ ,B is derived by application of some inference figure. The 

only candidates are the structural figures (Thinning, Contraction and Interchange), the -IA 

figures (:J-IA, &-IA and V-IA), and 1-IS. 

In fact, 1-IS is not' a possibility. For if I' ~ 1B were derived from B, I'~ by 1-IS, 

then the sequent B & ( &I') ~ would also be derivable ( where ( &I') represents the conjunction 

of all of the members of I'), and hence so would be B & ( &I') ~ C for arbitrary C by 

Thinning, contradicting the fact that WG is not finitely trivialisable. A similar argument 
w 

shows that I'~ 1B cannot be the result of Thinning in the succedent. 

This leaves only those figures in which the principal formula occurs in the antecedent. 

We consider only Thinning and :J-IA; the remaining figures can be dealt with similarly. 

If I'~ 1B is derived by Thinning in the antecedent, then I' is a sequence of the form C, 

I' 1 and the upper sequent of the figure is I' 1 ~ 1B. The observation that ~ 1B cannot be 

derived in W G ensures that I' 1 is not empty. On inductive hypothesis, then, 1B is a 
w 

subformula of some member of I' 1, and hence also of some member of I'. 

If I'~ 1B is derived by :J-IA then I' is a sequence of the form C :J D , I'1, I'2' and t he 

upper sequents of the figure are r
1 
~ C and D , r 2 ~ 1B. On inductive hypothesis , 1B is a 
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subformula of D or of some member of r2. But then it must also be a subformula of some 

member of r. 

We have shown, then, that for every sequent of the form I'-+ 1B derivable in WG , 
w 

"lB must be a subformula of some member of I'. To complete the proof of Theorem 2, it 

suffices to note that, if 1B = 1C is a theorem of C , then 1B -+ 1C and 1C -+ 1B are both w 

derivable sequents in WG , and therefore 1B and 1C must each be a subformula of the 
w 

other , from which it follows that they are in fact the same formula. 

Theorem 2 shows that, despite the incorporation of postulates (10) and (11), Cw is a 

very weak system with respect to negation: no two (different) negated formulas are provably 

equivalent in this system. We turn now to the stronger C-systems. For simplicity , we 

restrict our attention initially to C 1. 

Particular interest attaches to the question which formulas are provably equivalent in 

C 1 to the schema B0
, because of the special role which this formula plays. It might be 

expected that such trivial variants as 1(1B & B) or 1( (B & 1B) & (B & 1B)) could be 

proved equivalent in C1 to B0
, and hence equally capable of expressing the proposition that B 

"behaves classically". But in the absence of SE, there is no guarantee of a uniform argument 

to this effect, for although (B & 1B) = (1B & B) and (B & 1B) = ((B & 1B) & (B & 1B)) 

are easily derived in C1, it does not follow that 1(B & 1B) = 1(1B & B) and 1(B & 1B) = 
1( (B & 1B) & (B & 1B)) are also derivable. These cases must therefore be considered 

individually. 

A first result is promising. 

Theorem 3. In C1, the schema 1(B & 1B) = 1((B & 1B) & (B & 1B)) is derivable. 

Note: In this and subsequent proofs, we will make use of the following rules and schemata, 

easily shown to be derivable in positive intuitionistic logic and therefore in all of the C-

systems. 



Transitivity: 

Permutation of 

antecedents: 

Importation: 

Exportation: 

OD D-:JE 

C'-:J E 

O(D'-:JE) 

D-:J ( C-:J E) 

C'-:J(D-:JE) 

(C&D)-:JE 

(C&D)-:JE 

C'-:J(D-:JE) 
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Prefixing: (D::, E):) ((C:) D)::, (C '-:J E)) 

Suffixing: 

Distribution: 

(C::, D) '-:J ((D:) E)::, (C:) E)) 

(C &(D v E)) = ((C & D) V (C & E)) 

(CV (D & E)) =((CV D) & (CV E)). 

In addition, we will use the following schemata, easily shown to be derivable in C with w 

the assistance of (9) and (10). 

C -reductio: 
w 

(C ::, 1C) ::, ,c 
(1C '-:J C) :) C. 

Proof of Theorern 3: The derivation of 1(B & 1B) :) 1( (B & 1B) & (B & 1B)) is as follows. 

By postulate (4), we have both 

( ( B & 1 B) & ( B & 1 B)) ::, ( B & 1B) and ( B & 1B) ::, B, 

from which follows, by transitivity, 

((B & 1B) & (B & 1B)) ::, B. 

A similar argument, using also (5), yields 

((B & 1B) & (B & 1B))::, 1B. 

Substituting ((B & 1B) & (B & 1B) for A in (12) 0 and permuting antecedents yields 
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(((B & 1B) & (B & 1B)):, B):, (((( B & 1B) & (B & 1B)) :, 1B):, 

(B 0
:,--, (( B & 1B) & (B & 1B)))). 

But the first two antecedents have been shown to be derivable, hence by two applications of 

(3) we obtain the desired 

B0
:, 1((B & 1B) & (B & 1B)). 

The converse derivation is as follows. We show firstly that (B & 1B) 0 is derivable in 

C1. Substituting (B & 1B) & 1(B & 1B) for A in (12) 0 and permuting antecedents yields 

(((B & 1B) & 1(B & 1B)):, B):, (((B & 1B) & 1(B & 1B)):, 1B):, 

(B 0
:, 1((B & 1B) & 1(B & 1B)))). 

The first two antecedents are easily derived, leaving 

But an instance of (5) is 

( (B & 1B) & 1(B & 1B)) :, B0
, 

hence by transitivity, we obtain 

((B & 1B) & 1(B & 1B)):, 1((B & 1B) & 1(B & 1B)). 

From this follows , by Cw-reductio and (3), 

1((B & 1B) & 1(B & 1B)), 

which is by definition (B & 1B) 0
• 

To continue, it follows straightforwardly from the above result and (13) 0 that ((B & 

1B) & (B & 1B)) 0 is also derivable in C1. We now consider the result of substituting B & 

1B and (B & 1B) & (B & 1B) for, respectively, A and Bin (12) 0
. As just observed, the first 

antecedent is derivable in C1, leaving 

((B & 1B) :) ((B & 1B) & (B & ,B))):, 

(((B & ,B):, 1((B & 1B) & (B & 1B))):, 1(B & 1B)). 

The antecedent of the above schema is also easily derived , using (6) and (2), leaving 

((B & 1B):, ,((B & 1B) & (B & 1B))):, 1(B & 1B). 

But an instance of (1) is 

,((B & 1B) & (B & 1B)):, ((B & 1B):, 1((B & 1B) & (B & 1B))), 

whence by transitivity, we obtain the desired 

1((B & 1B) & (B & 1B)):, 1(B & 1B). 
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This concludes t he proof of Theorem 3. 

We have shown, then, that one of the formulas put forward as a trivial variant of B0 is 

in fact provably equivalent to it in C1. Unfortunately, the same cannot be said for the second 

formula, 1(1B & B). 

Theorem 4. ln C 1, the schema 1(B & 1B) = 1(1B & B) is not derivable. 

Proof: One half on this schema, 1(B & 1B) :J 1(1B & B) is in fact derivable m C
1 

as 

folJows. Instances of postulates (5) and (4) respectively are ClB & B) :J Band ("lB & B) :J 

1B. Substituting 1B & B for A in (12) 0 and permuting antecedents yields ((1B & B) :) B) 

:J (((1B & B) :J 1B) :J (B 0 
:J 1 (1B & B))). But the first two antecedents have been shown 

to be derivable; hence by two applications of (3), we obtain B0 
:J 1 (1B & B), which is just 

the desired 1(B & 1B) :J 1 (1B & B). 

The converse, however, is not derivable. This is shown by the following matrices, which 

validate the postulates of C1 but invalidate this schema when B is assigned the value 1. 

*O 

*1 

*2 

*3 

*4 

5 

0 1 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

2 3 4 5 

0 0 0 5 

0 0 0 5 

0 0 0 5 

0 0 0 5 

0 0 0 5 

0 0 0 0 

-, 
5 

2 

3 

4 

5 

4 

( Only the value 5 is not designated). 

& 

0 

1 

2 

3 

4 

5 

0 1 

0 1 

1 1 

2 3 

3 3 

4 4 

5 5 

2 3 

2 3 

4 3 

2 4 

3 3 

4 4 

5 5 

4 

4 

4 

4 

4 

4 

5 

5 

5 

5 

5 

5 

5 

5 

V 

0 

1 

2 

3 

4 

5 

0 1 2 

0 0 0 

0 1 0 

0 0 2 

0 1 2 

0 1 2 

0 1 2 

3 4 5 

0 0 0 

1 1 1 

0 2 2 

3 3 3 

3 4 4 

3 4 5 

That 1(B & 1B) and 1(1B & B) are not provably equivalent in C 1 is certainly curious, 

if not anomalous. For , as is argued with respect to the similarly deficient system J 1 in 

Chapter 2 such fine discrimination between what would ordinarily be regarded as mere 

syntactic variants demands some sort of justification. But the motivating considerations for 

C1, namely~ conditions (I) to (IV), not only do not support such discrimination but militate 

against it. 
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For although 1(B & 1B) = 1(1B & B) is not derivable in C1, t he matrices in the proof 

of Theorem 1 show that this schema can be added to C1 without compromising its 

satisfaction of condition (I). For the C-systems, satisfaction of (I) is equivalent to t he 

underivability of t he schema (A & 1A) :J B. But the matrices in question invalidate this 

schema (when A is assigned the value 1 and B is assigned the value 2, for example) while at 

the same time validating not only the postulates of C 1 but also 1(B & 1B) = 1(1B & B). 

The absence of t he above schema from C 1, then, presents itself as not only anomalous in 

its own right, but in contravention of at least the spirit of condition (II). 

considerations univocally suggest that C 1 should be extended to include this schema. 

These 

Of course, it is not to be expected that the mere addition of 1(B & 1B) = 1(1B & B) 

will remedy any other deficiencies of Cl' For, as Theorems 3 and 4 show, the presence of a 

schema stating the equivalence of B0 to one syntactic variant is not sufficient to guarantee its 

equivalence to any other. And even if sufficiently many such schemata could be added to 

secure the equivalence of B 0 to all such variants, there is no reason to believe that the 

deficiencies exhibited in Theorem 1 would not remain, for it is shown there that, in general, 

1A = 1(A & A) is not derivable in C 1, notwithstanding that the particular instance of this 

schema obtained by substituting B & ,B for A is shown to be derivable in Theorem 3. 

Rather than attempting to treat individually the symptoms of the failure of the C-

systems to enjoy SE, a more obviously systematic strategy is to attempt to secure t his 

property directly. 

In [19], two methods of extending the C-systems in order to secure SE are proposed: 

(i) addition o( the rule RC: 
C:JD 

---·and 
1D:J1C' 

(ii) addition of the (weaker) rule EC: 
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(We note that the above rules were given the names Ax.RC and Ax.EC in Chapter 4; 

however, since we do not need to distinguish between the axiomatic and sequent-based 

versions here, we revert to the original and simpler nomenclature). 

Because the C-systems enjoy SE+, and lack only the property of intersubstitutivity of 

provable equivalents in negated contexts, it is evident that the addition of either RC or EC is 

sufficient to guarantee SE in full. Moreover, the admissibility of EC (in any extension of a 

C-system) is also a necessary condition for SE. 

3. THE RC-SYSTEMS 

We investigate firstly the result of adding RC to the C-systems. For each C n (l ~ n ~ 

w), the result of adding RC will be called RC n. (We note that this diverges from the 

nomenclature of [19], in which the resulting systems are ca~led CCn(l ~ n ~ w)). 

The following initial result and its proof are taken directly from [19]. 

Theorem 5. RC w f:. C0 ( classical logic). In particular, the schema ( A & 1A) ::J B 1s not 

derivable in RC . 
w 

Proof: The following matrices validate the postulates of RC but invalidate the above w 

schema when A is assigned the value 1 and B is assigned the value 2. 

::J O 1 2 1 

*O O 1 2 2 

1 0 0 2 0 

2 0 0 0 0 

(Only the value O is designated). 

& 0 1 2 

0 0 1 2 

1 1 1 2 

2 2 2 2 

V O 1 2 

0 0 0 0 

1 0 1 1 

2 0 1 2. 

Thus, the addition of RC to Cw does not result in any compromise of condition (I) , and 

the system so obtained certainly does not suffer from deficiencies exhibited in Theorem 2. 

Unfortunately, the same is not true of the stronger C-systems. The following result is 
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proved in [19], but we employ a rather simpler proof below. 

Theorem 6. For 1 ~ n < w , RCn = C0. 

Proof: It suffices to show t hat, for any 1 ~ n < w, the formula B(n) is derivable in RC · Since 
w 

this is a subsystem of each RCn(l ~ n < w), it follows that , in each such RCn , the formu la 

qualifying the reduct'lo schema in (12)(n) is derivable, and hence so is unqualified reductio. 

As noted earlier, this suffices to collapse Cw, and therefore every RCn(l ~ n < w) , into 

classical logic. 

We show firstly that B0 is derivable in RC for any formula B. An instance of postulat e 
w 

(4) is (B & ,B) :J B. Applying RC yields ,B :J ,(B & 1B). Similarly, (5) and RC yield 

11B :) , (B & ,B). These, together with (9), yield (1B V 11B) :) 1(B & ,B). But the 

antecedent is an instance of (10), so (3) yields ,(B & 1B), which is B0 by definition. 

From this, it follows straightforwardly that Bn is derivable in RC for 1 < n < w, since 
w 

each such Bn is itself of the form (Bn- 1) 0
• A simple inductive argument t hen shows that the 

conjunction Bn & Bn-l & ... & B0
, which is by definition B(n), is also derivable. 

Thus, the addition of RC to the C-systems collapses all but the weakest system, C , 
w 

into classical logic. We turn instead to EC , in the hope that the addition of this rule will not 

have such drastic consequences. 

4. THE EC-SYSTEMS 

For each Cn(l ~ n ~ w) , the result of adding EC is called ECn. (This is as in [19]) . 

Theorem 7. EC w i= C0. 

Proof: This follows from Theorem 5 and the fact the EC 1s derivable from RC m any 

extension of C ; hence, EC is a subsystem of RC . w w w 

In fact, EC is a proper subsystem of RC . w w 

Theorem 8. EC i= RC . 
w w 

Proof: The following matrices validate t he postulates of ECw , but invalidate t he schema , (B 

& ,B) , shown to be derivable in RC in t he proof of Theorem 6, when B is assigned the 
w 
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value 1. 

::) 0 1 2 3 4 5 6 7 -, 
0 0 1 2 3 4 5 6 7 7 

1 0 0 2 3 2 3 6 6 2 

2 0 1 0 3 1 3 
,.. 

;) ;) ;) 

3 0 1 2 0 4 1 2 4 4 

4 0 0 0 3 0 3 3 3 3 

5 0 0 2 0 2 0 2 2 2 

6 0 1 0 0 1 1 0 1 0 

7 0 0 0 0 0 0 0 0 0 

& 0 1 2 3 4 5 6 7 V 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 
,.. 

6 7 0 0 0 0 0 0 0 0 0 ;) 

1 1 1 4 5 4 5 7 7 1 0 1 0 0 1 1 0 1 

2 2 4 2 6 4 7 6 7 2 0 0 2 0 2 0 2 2 

3 3 5 6 3 7 5 6 7 3 0 0 0 3 0 3 3 3 

4 4 4 4 7 4 7 7 7 4 0 1 2 0 4 1 2 4 

5 5 5 7 5 7 5 7 7 5 0 1 0 3 1 5 3 5 

6 6 7 6 6 7 7 6 7 6 0 0 2 3 2 3 6 6 

7 7 7 7 7 7 7 7 7 7 0 1 2 3 4 5 6 7 

(Only the value O is designated). 

Thus, ECw is distinct from RCw. We now determine whether ECn(l ~ n < w) are 

distinct from RC n (1 ~ n < w). Several lemmas are required. 

In the following lemmas, F n is defined for each system C n (1 ~ n < w) to be the schema 

B(n) & (B & 1B). 

Lemma 1. In each Cn(l ~ n < w), the schema F n::) A is derivable. 

Proof: An instance of postulate (12)(n) of each Cn(l ~ n < w) is B(n) ::) ((1A::) B) ::) ((1A::) 

1B) ::) 11A)). Permuting antecedents yields (1A::) B) ::) ((1A ::) 1B) ::) (B(n) ::) 11A)). 

An instance of (1) is B ::) (1A :) B), so transitivity delivers B ::) ((1A ::) 1B) ::) (B(n) ::) 

11A)). Permutation yields (1A ::) ,B) ::) (B ::) (B(n) ::) 11A)), which by (1) and 
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t ransitivity is further reduced to 1B :J (B :J (B ( n) :J 11A)). Permutation and importation 

transform this into (B(n) & (B & 1B) ) :J 11A. By (11) and transitivity, this yields (B(n) & 

(B & 18)) :J A which is, by definition , F n :J A. 

Lemma 2. In C , the schema A V A (i) is derivable, for 1 ~ i < w. 
w 

Proof: We consider firstly the schema 1Ai. For 1 < i < w, 1Ai is, by definition , 11(Ai-l & 

I Ai-1; hence, by transitivity, we obtain 1Ai :J 1Ai-l. A straightforward inductive argument 

shows that we therefore have IA1 :J IA O for all 1 < i < w, and thus for all 1 ~ i < w, since 

IA 1 is just 1A 0 • But IA O is, by definition, 11(A & 1A). By (11), we have 11(A & 1A) 

:J (A & 1A) , and by (4), (A & 1A) :J A; whence by transitivity again , we obtain 1A0 :J 

. . 
A. This , together with the above-derived 1A 1 :J 1A O , yields 1A i :J A, for 1 ~ i < w. 

. . 
To continue, an instance of postulate (10) of Cw is A1 

V 1A1, which, together with the 
. . 

schema ,Ai :J A of the preceding paragraph, quickly leads to A V A\ for all 1 ~ i < w. 

Explicitly, we have AV Ai, AV Ai-1, ... ,AV A 0
, which can be conjoined to yield (AV Ai) & 

(A V Ai-l) & ... & (A V A 0 ). An appropriate number of applications of distribution and (3) 

transform this schema into AV (Ai & A 'i-l & ... A 0 ), which is, by definition, the desired A V 

Lemma 3. In each Cn(l ~ n < w), the schema F n (n) is derivable. 

Proof: The following is an instance of (9): 

(F n :J F n (n)) :J ((F n (n) :J F n (n)) :) ((F n VF n (n)) :J F n (n) )). 

In each C n ( 1 ~ n < w), the first antecedent is derivable by Lemma 1. The second is easily 

derived in C , and t he third is also derivable in C by Lemma 2. This leaves the desired w w 

F n (n) as a schema derivable in each Cn(l ~ n < w). 

Lemma 4. In each C n ( 1 ~ n < w), the schema ( A :J F n) :J A ( n) is derivable. 

Proof: The following is an instance of prefixing: 

The antecedent is derivable in each Cn(l ~ n < w) by Lemma 1, leaving 

( A :J F n) :J ( A :J A ( n)) . 
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Permuting antecedents yields 

An instance of postulate ( 1) is 

A ( n) :J ( ( A :J F n) :J A ( n)) , 

which, together with the preceding schema and an instance of (9), yields 

(AV A(n)) :J ((A :J F n) :J A(n)). 

But the antecedent is derivable in C by Lemma 2, leaving the desired 
w 

Lemma 5. In each Cn(l ~ n < w), the schema (A :J F n) :J (A :J F n)(n) is derivable. 

Proof: An instance of postulate (6), with antecedents permuted, is 

F n (n) :J (A(n) :> (A(n) & F n (n))) 

The antecedent is derivable in each Cn(l ~ n < w) by Lemma 3, leaving 

A(n) :J (A(n) & Fn(n)). 

An instance of postulate (IS)(n) of each Cn(l ~ n < w) is 

(A(n) & Fn(n)) :J (A :J Fn)(n). 

By transitivity, the two preceding schemata yield 

A ( n) :) ( A :) F n) ( n). 

But by Lemma 4, in each Cn(l ~ n < w), we have 

( A :J F n) :J A ( n), 

whence, by transitivity again, we obtain the desired 

Lemma 6. In each Cn(l ~ n < w), the schemata and deduction rules of positive classical logic 

are derivable. 

Proof: This is stated in various places, e.g. for C1 in Theorem 3 of [9]. But it also follows 

fairly easily from Lemma 2 above. For to obtain an axiomatics for positive classical logic, it 

suffices to add the schema A V (A :J B) to positive intuitionistic logic as axiomatised by 

postulates (1) to (9) of Cw. By Lemma 2, we have AV A(n) in Cw. Conjoined with postulate 

(10), this yields (AV A(n)) & (AV 1A). By distribution, this is equivalent to AV (A(n) & 
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1A). In each Cn(l ~ n < w), the schema ((A & 1A) & A(n)) :J B follows straightforwardly 

from an instance of postulate (12)(n), and this reduces easily to (A(n) & 1A) :) (A :) B). 

Together with the preceding schema and with the assistance of (9), this yields the desired 

AV (A :J B). 

Lemma 7. In each C n (1 ~ n < w), the schema B = ( (B :J F n) :J F n) is derivable. 

Proof: The following is an instance of postulate (9): 

(Fn:) A) :J ((A:) A) :J ((Fn VA):) A)). 

The first antecedent is derivable in each Cn(l ~ n < w)by Lemma 1, and the second is easily 

derived in C , leaving 
w 

(F n VA) :) A. 

Substituting B = ( (B :J F n) :J F n) for A yields 

(Fn V (B = ((B:) Fn) :J Fn))):) (B = ((B:) Fn) :J Fn)). 

But the antecedent is an instance of the positive classical tautology 

AV (B = ((B :J A) :J A)), 

and is therefore derivable in C n (1 ~ n < w) by Lemma 6, leaving the desired 

Lemma . In each C n (1 ~ n < w), the schema ( (B :J F n) :) F n) ( n) is deriv ab1e. 

Proof: ubstituting B :J F for A in the schema of Lemma 5 yields n 

Substituting (B :J F n) :J F n for A in the schema of Lemma 4 yields 

((B :J F n) :J F n) :J F n):, ((B :J F n) :J F n)(n). 

These two schemata with the assistance of (9), yield 

( ( (B :J F n) :J F n) v ( ( (B :, F n) :J F n) :J F n)) :J 

( ( B :) F n) :, F n) ( n). 

But the antecedent is an instance of the positive classical tautology A V (A :J B) , and 1s 

therefore derivable in each C n ( 1 ~ n < w) by Lemma 6, leaving the desired 

( ( B :) F n) :) F n) ( n). 
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Finally, we are in a position to determine the result of adding the rule EC to the 

systems Cn(l ~ n < w). 

Theorem 9. For 1 ~ n < w, ECn = C0. 

Proof: As noted at t he end of Section 2, the addition of EC to C n ( 1 ~ n < w) suffices to 

guarantee the property SE. This permits the following very simple proof. 

In each ECn(l ~ n < w), Band (B ::) F n) :> F n are provably equivalent by Lemma 7, 

and the schema ((B ::) F n) :; F n) (n) is derivable by Lemma 8. Because they enjoy SE, it 

follows that B(n), which is the result of substituting B for (B :J F n) :> F n in this schema, is 

also derivable in each ECn(l ~ n < w). As in the proof of Theorem 6, this yields unqualified 

reduct?:o, which suffices to collapse each EC n ( 1 ~ n < w) in to classical logic. 

It will be noted that the proof of Theorem 9 does not rely upon the actual derivability of 

the rule EC in ECn(l ~ n < w); it is sufficient merely that this rule is admissible. But, as 

noted at the end of Section 2, the admissibility of EC in any extension of C n ( 1 ~ n ~ w) is a 

necessary condition for SE. We can therefore state the following more general result. 

Theorem 10. There is no extension of any Cn(l ~ n < w) which enJoys SE but which 1s 

weaker than classical logic. 

(We note that an alternative proof of Theorem 9 can be constructed using the schema 

,T in place of Fn, where T is defined to be an arbitrary theorem of Cw. While this has the 
• 

slight advantage t hat, unlike F n' ,T is not relative to each Cn(l ~ n < w), it has the 

disadvantage that Lemma 1 and those subsequent lemmas that rely upon it must be restated 

t o apply to EC n ( 1 ~ n < w) rather than C n (1 ~ n < w) . This is because the schema 1T ::) A 

is not derivable in the latter systems, but only in the former. This alternative proof, 

therefore, does not demons t rate as clearly that it is precisely because the C-systems fail to 

enjoy SE that they do not collapse in to classical logic). 
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5. CONCLUSION 

Obtaining analogues of the C-systems which both enJoy SE and satisfy the 

paraconsistency conditions, then, is not to be achieved by extension but perhaps by some 

other method of variation. One possibility , which involves the least revision of the C-systems 

as they stand, is to retain all of the postulates of these systems but to redefine the schema B0
• 

For t here is nothing sacrosanct about the original definition of t his schema as 1(B & 1B) ; in 

different contexts other candidates may well prove more adequate in expressing the 

proposition that B "behaves classically". A second and more radical possibility is to retain 

the method of constructing the higher C-systems but to change the base system. Among the 

possible alternatives to C which suggest themselves are the systems NC and OC defined in 
w w w 

Chapter 3. Both of these possibilities are considered in greater detail in Chapter 6. 



Chapter Six: Variations on the C-Systems 

1. METHODS OF VARIATION 

In Chapter 5, it was shown that the systems Cn (I ~ n < w) cannot be extended so as to 

secure the property SE without collapse into classical logic. In order to obtain paraconsistent 

analogues of the C-.systems which enjoy SE, then, other methods of variation must be 

considered. In this chapter, we investigate two such methods: 

(i) retaining the postulates of Cn(l ~ n ~ w), but redefining the schema B0 (and 

derivatively, B(n); and 

(ii) retaining the method of constructing the stronger systems Cn (1 ~ n < w) on the basis of 

C , but replacing this system with some other base system. 
w 

2. REDEFINING B 0 

In postulate (12)(n) of each Cn (1 ~ n < w), the schema B(n) is used to qualify the 

reduct£o schema (A~ B) ~ ((A~ 1 B) ~ 1A), the unqualified addition of which suffices to 

collapse these systems into classical logic. The reason for such collapse when RC or EC is 

added to the systems Cn (1 ~ n < w) is that in each resulting RCn (1 ~ n < w) and ECn (1 ~ 

n < w) the schema B(n) is derivable, and hence so is unqualified reduct£o. An initial 

constraint on the redefinition of B0
, then, is that B(n) must not be derivable in the resulting 

systems. 

A second but les·s formal constraint pertains to the interpretation of the schema B0
, 

originally defined as ,(B & 1 B). This schema lends itself to the interpretation that Bis not 

paradoxical, or "behaves classically". Accordingly , C1 is constructed so that , for any 
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classically derivable schema A with subformulas Al' ... ,Am, while A may not be derivable in 

C 1' the schema ( A 1 ° & ... & Am 0 ) :) A is. An analogous property holds also of the remaining 

Cn (1 ~ n < w). While this construction does not depend on the precise definition of B0
, it is 

desirable that any candidate replacement for 1(B & I B) should similarly lend itself to this 

informal interpretation. 

3. THE C'-SYSTEMS 

A candidate for such redefinition is suggested by the construction of Cw. This system is 

neatly constructed by adding to positive intuitionistic logic not the intuitionistic negation 

postulates 1(A & IA) and A :) IIA, but rather their "duals" AV IA and IIA :) A. Given 

that it is untenable to define B0 as 1(B & 1B) in any extension of Cn(I ~ n < w) which 

enjoys SE, it is natural to turn to B :) 11B as an alternative. Accordingly, we define C~ ( 1 ~ 

n ~ w) to be those systems which have, respectively, exactly the same postulates as Cn(l ~ n 

~ w) except that B0 is defined as B :) 11B. (B(n) is defined recursively in terms of B0 as 

before. We note also that C is unaltered by the redefinition of B0
; hence, C' == C ) . w w w 

This redefinition arguably satisfies at least the second constraint outlined above. For 

while 1(B & 1B) can be read informally as "It is not the case that both B and not-B", B :) 

IIB can be read as '"If it is the case that B, then it is not the case that not-B". Each of these 

formulas presents itself as well-suited to represent the proposition that B is not paradoxical or 

"behaves classically". 

Moreover, the first constraint is also satisfied. 

Theorem 1. In each of the systems C' n (l ~ n < w), neither the schema B ( n) nor the reductio 

schema (A:) B):) ((A:) 1B) :) IA) is derivable. 

Proof: The matrices in the proof of Theorem 5 of Chapter 5 validate the postulates of each 

C'n(l ~ n ~ w), but invalidate B0
, and therefore B(n) for all 1 ~ n < w, as well as reduct-io, 

when A is assigned the value O and B is assigned the value 1. 
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It is also easy to establish that the systems C' n ( 1 ~ n ~ w) form a linear hierarchy in 

analogy with the original Cn(l ~ n ~ w). A lemma is required. 

Lemma 1. In each C'n(l ~ n < w), the schema B(n) :J B(n+l) is derivable. 

Note: The rules and schemata listed before the proof of Theorem 3 of Chapter 5 will be used 

also in the proofs which follow. 

Proof of Lemma 1: An instance of postulate (6) of each C'n(l ~ n < w) is B(n) :J ((11B)(n) 

:J (B(n) & ("11B)(n))). But B(n) :J(,,B)(n) follows by transitivity from B(n) :J (,B)(n) and 

(,B)(n) :J (11B)(n), both of which are instances of postulate (16)(n). By (2), therefore, we 

have B(n) :J (B(n) & (11B)(n)). An instance of postulate (15)(n) is (B(n) & (11B)(n)) :J (B 

:J 11B)(n), so by transitivity, we have B(n) :J (B :J 11B)(n)_ But B :J 11B is B0
, by 

definition, and (B :J 11B)(n) is (B0 )(n). And (B 0 )(n) :J (B 0 )n is an instance of (4) if n > 1, 

or of the easily derived A :J A if n == l , so by transitivity again, we have B(n) :J (B0 )n. Again 

by definition, (B 0 )n is just Bn+1, so we have B(n) :J 3n+l, from which B(n) :J (Bn+l & B(n)) 

follows by (6) and (2). But this is the desired B(n) :J B(n+l) , by definition. 

Theorem 2. For 1 ~ n < w, each C'n+l is a subsystem of C'n' and C'w (==Cw) is a subsystem· 

of every C'n(I ~ n ~ w). 

Proof: That C'w is a subsystem of every C' n (I ~ n ~ w) is immediate from the construction of 

these systems. To show that, for 1 ~ n < w, each C' ..Ll is a subsystem of C' , it suffices to n I n 

show that postulates (12)(n+l) to (16)(n+l) of C'n+l are derivable in C'n· 

From postulate (12)(n) of C'n and B(n+l) :J 3(n), which is an instance of (5), (12)(n+l) 

follows by t ransitivity. 

From postulate (13)(n), (A(n+l) & B(n+l)) :J (A & B)(n) follows as in the preceding 

paragraph. But (A & B)(n) :J (A & B)(n+ l) is derivable in C'n by Lemma 1, whence 

transitivity yields the desired (13)(n+l). 

A similar argument shows that (14)(n+l) to (16)(n+l) are also derivable in C'n· 

Thus C' n (I ~ n ~ w) form a linear hierarchy of ( not necessarily distinct) systems, with 

strongest member C' 1 and weakest member C'w· 
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4. THE C'-SYSTEMS AND THE PROPERTY OF INTERSUBSTITUTIVITY 

OF PROV ABLE EQUIVALENTS 

As with the original C-systems, the schemata and rules of C' n (1 ~ n ~ w) do not suffice 

to guarantee SE. 

Theorem 3. The systems C' n (1 ~ n ~ w) do not enjoy SE. 

Proof: Easily derived in C'w' and therefore in each C' n (l ~ n ~ w), are the schemata A = (A 

& A) and 1A :) 1A. If C'n(l ~ n ~ w) enjoyed SE, then 1A :) 1(A & A), the result of 

substituting A & A for ( one occurrence of) A in IA :) 1A, would also be derivable in these 

systems. But the matrices in the proof of Theorem 1 of Chapter 5 validate the postulates of 

C' n(l ~ n ~ w), but invalidate 1A :) 1(A & A) when A is assigned the value 1. Hence, these 

systems do not enjoy SE. 

To secure SE, the obvious strategies are again to add RC or EC. The systems so formed 

are, respectively, RC'n(l ~ n ~ w) and EC'n(l ~ n ~ w). We will investigate in detail only 

the former family of systems. As with the C-systems, the admissibility of RC in any 

extension of a C1-system (in the same vocabulary) is sufficient for SE, and the admissibility of 

EC is both necessary and sufficient. Unlike the C-systems, however, the addition of these 

rules does not collapse the C'-systems into classical logic. 

Theorem 4. For 1 ~ n ~ w, RC' n =/= C0 ( classical logic). Similarly, EC' n =/= C0. 

Proof: The matrices referred to in the proof of Theorem 1, which invalidate the classically 

derivable reduct·io schema, validate not only the postulates of C' n (I ~ n ~ w ), but also the 

rules RC and EC. 

5. THE RC'-SYSTEMS AND THE P ARACONSISTENCY CONDITIONS 

Theorem 4 indicates that, not only do the systems RC' n(l ~ n ~ w) enjoy SE, but they 

also promise to satisfy da Costa 's conditions for paraconsistent logics. 
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Condition (I) is explicitly satisfied by axiomatic systems such as those under 

investigation just in case the schema (A & 1A) :) B is not derivable. And indeed, this 

schema is not derivable in RC' n ( 1 ~ n ~ w), for it is invalidated by the matrices referred to in 

the proof of Theorem 4 when A is assigned the value 1 and B is assigned the value 2. It is 

possible however, that (I) may be substantively, though not explicitly, compromised by the 

derivability of some variant of the above schema (as is the case with some of the J-systems of 

Chapter 4). A judgement on whether the systems RC' n ( 1 ~ n ~ w) substantively satisfy (I) 

is, therefore , better reserved until the deductive strength of these systems is more fully 

explored in the following section. 

Similarly, whether condition (II), or even the weaker (II'), is satisfied by the the systems 

RC' n ( 1 ~ n ~ w) will emerge more clearly as their deductive strength is explored. 

In addition to (I) and (II), the two further conditions listed by da Costa when dealing 

specifically with the C-systems should perhaps also be considered. Of these, condition (IV) is 

unproblematic. It requires that it must be simple to extend these systems to predicate calculi 

of first order. There is no reason to think that the systems currently under investigation do 

not. satisfy this condition as well as the original C-systems do. Condition (III), however, is 

certainly not satisfied by the systems RC' n (l ~ n ~ w). This condition requires that the 

schema 1(B & 1B) not be derivable. But it is shown to be derivable in RCw in the proof of 

Theorem 6 of Chapter 5; hence, it is derivable in each RC' n (l ~ n ~ w). There is no 

compelling reason, however, to insist that (III) should be satisfied by these systems; for it is 

important that 1(B & 1B) not be derivable in the original C-systems only because this is the 

schema in terms of which B(n) is defined. Where B(n) is defined otherwise, as in the 

C1-systems the derivablility of 1(B & 1B) is less significant. Rather, what is important is 

that B(n) not be derivable in such systems; and it follows from Theorem 4 that this schema is 

indeed not derivable in the systems RC' n ( 1 ~ n ~ w). 

6. THE RC'-SYSTEMS 
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That the systems RC' n (1 ~ n ~ w) form a linear hierarchy, with strongest member RC' 
1 

and weakest member RC' , follows immediately from Theorem 2. However, it remains to be w 

established whether these systems are actually distinct. 

The following result will prove very powerful. 

Lemma 2. In RC'w' the schema (""lB)(n) is derivable, for 1 ~ n < w. 

Proof: The proof proceeds by induction on the value of n. 

Base case (n = 1). By definition , (""lB)(l) = (1B) 0 = 1B :J 111B. But this follows from 

11B :J B, which is an instance of postulate ( 11) of RC' w' by RC. 

Inductive step (n = k > 1). On inductive hypothesis, (1B)(k-l) is derivable in RC'w' whence 

so is (1B)k-l, from which follows 1(B & 1B) :J (1B)k-l by (1). Applying RC twice yields 

111(B & 1B) :J 11(1B)k-l_ On inductive hypothesis, (1(B & "1B)) 0
, i.e. 1(B & 1B) :J 

111(B & 1B), is derivable in RC'w' whence by transitivity, we get 1(B & 1B) :J 

11(1B)k-l_ But 1(B & 1B) is shown in the proof of Theorem 6 of Chapter 5 to be derivable 

in RCw (= RC'w), whence by (3) we get 11(1B)k-l_ By (1), this yields (1B)k-l :J 

11(1B)k-l, which is, by definition, ((1B)k-l) 0
, i.e. (1B)k. Again on inductive hypothesis, we 

have (1B)(k-l), which conjoined with (1B)k yields (1B)k & (1B)(k-l), or by definition, 

(1B)(k)_ 

Lemma 2 will be used to establish that there is in fact a great deal of collapse in the 

RC'-hierarchy. A further lemma is required. 

Lemma 3. In RC' , the schema B(n+l) :J B(n+2) is derivable , for 1 ~ n < w. 
w 

Proof: An instance of postulate (1) of RC'w is 11Bn :J(Bn :J 11Bn), or , by definition, 11Bn 

:J Bn+ l. Applying RC twice yields 1111Bn :J 11Bn+1, from which follows (11Bn :J 

1111Bn) :J (11Bn :J 11Bn+ l) by prefixing. But the antecedent is just (11Bn) 0
, which is 

derivable in RC' by Lemma 2, leaving 11Bn :J 11Bn+l. Easily derived in RC' is (Bn & 
w w 

previous schema, this yields, by transitivity, (Bn & Bn+ 1) :J 11Bn+ 1. Another instance of 
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(1) is ,,Bn 1 :J (Bn,l :J ,,Bn 1), or, by definition , ,,Bn+ l :J Bn+2. Again , t ransi ti vity 

yields (Bn & Bn+ l) :J Bn+2. From this, it is straightforward to derive B(n+l ) :J (Bn+ 2 & 

B(n-1 )) i.e. 8 (n_:_l) :J 8 (n+ 2)_ 

Theorem 5. For 1 ~ n < w RC' 1 = RC' , 2. n n, 

Proof: Since the RC'-systems form a linear hierarchy, it suffices to show that each RC' n+ 
1 

is 

a subsystem of RC'n+
2

. We need only show that postulates (12)(n+ l) to (16) (n+ l ) · of 

RC' ...1- i are derivable in RC' ?· 
n n -

Postulate (12)(n+ l) follows by transitivity from (12)(n+ 2) and B(n l) :J B(n+ 2) , which 

is derivable in RC'w' and hence in each RC' n+ 2, by Lemma 3. 

From (l3)(n+z), (A(n+ 2) & B(n+ 2)) :J (A & B)(n+l) is easily derived, whence follows 

(l3)(n l) as in the preceding paragraph. 

A similar argument shows that (14)(n+l) to (16)(n+l) are also derivable in RC'n+z· 

Thus there are at most three distinct systems in the RC'-hierarchy: RC' 1, RC' 
2 

and 

RC' We now show that these three systems are indeed distinct. 
w 

Theorem 6. RC' w i=- RC' 2· 

Proof: The following matrices validate the postulates of RC'w' but invalidate postulate 

(12)(2) of RC'2 when A is assigned the value O and Bis assigned the value 1. 

:J 0 1 2 3 4 -, & 0 1 2 3 4 V 0 1 2 3 4 

·o 0 1 2 3 4 4 0 0 1 2 3 4 0 0 0 0 0 0 

1 0 0 2 2 4 2 1 1 1 ... 3 3 4 1 0 1 0 1 1 

2 0 1 0 1 4 1 2 2 3 2 3 4 2 0 0 2 2 2 

3 0 0 0 0 4 0 3 3 3 3 3 4 3 0 1 2 3 3 

4 0 0 0 0 0 0 4 4 4 4 4 4 4 0 1 2 3 4 

( Only the value O is designated). 

Theorem 7. RC' 2 i=- RC' 1. 

Proof: The following matrices validate the postulates of RC'? , but invalidate postulate (15) ~ -
of RC' 1 when A is assigned the value 1 and B is assigned the value 3. 
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:J 0 1 2 3 -, & 0 1 2 3 V 0 1 2 3 

0 0 1 2 3 3 0 0 1 2 3 0 0 0 0 0 

1 0 0 2 2 0 1 1 1 3 3 1 0 1 0 1 

2 0 1 0 1 0 2 2 3 2 3 2 0 0 2 2 

3 0 0 0 0 0 3 3 3 3 3 3 0 1 2 3 

(Only the value O is designated). 

The derjvability of (1B)(n) in RC'w' shown in Lemma 2, thus proves very powerful in 

collapsing the RC'-hierarchy. It also provides a way of greatly simplifying the formulations of 

RC' 1 and RC' 2. 

We define RC'* to be the system formed by adding to RC' the fol1owing schema, called w 

1-reductio: (A :J 1B) :J ((A :J 11B) :J 1A). 

Lemma 4. RC'* is a subsystem of RC' 2 ( and therefore also of RC'i), 

Proof: It suffices to show that 1-reducti'o is derivable in RC' 2. An instance of postulate 

(12/2) of RC1
2 is (1B)(2) :J ((A :J 1B) :J ((A :J 11B) :J 1A)). But (1B)(2) is derivable in 

RC'w' and hence also in RC' 2, by Lemma 2, leaving the desired 1-reducti'o. 

Thus, RC'* ostensibly falls between RC' w and RC' 2 in the RC'-hierarchy. In fact, it will 

be shown that postulates (12) (2) to (16) (2) of RC' 2 are derivable in RC'* , from which it 

follows that RC1
2 = RC'*, and that postulates (12) 0 to (14)

0 and (16) 0 of RC'1 are also 

derivable in RC'*, yielding a simpler formulation also of RC' 1. 

Lemma 5. Postulate (12) 0 of RC'1 is derivable in RC'*· 

Proof: Permuting antecedents in 1-reducti'o yields 

(A :J 11B) :J ((A :J 1B) :J 1A). 

Prefixing yields 

((A :J B) :J (A :J 11B)) :J ((A :J B) :J ((A :J 1B) :J 1A)). 

Another instance of pr~fixing is 

(B :J 11B) :J ((A :J B) :J (A :J 11B)), 

whence by transitivity we have 
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(B :J 11B) :J ((A :J B) :J ((A :J 1B) :J 1A)), 

which is, by definition , ( 12) 0 • 

Lemma 6. Postulate (12) (2) of RC' 2 is derivable in RC'*· 

Proof: From (12) 0
, which is derivable in RC'* by Lemma 5, it is straightforward to derive 

(12)( 2) as in the proof of Theorem 2. 

Lemma 7. Postulate (13) 0 of RC'i is derivable in RC'*· 

Proof: We begin by showing that the following de ~1organ law is derivable in RC'w : 1 (A & 

B) :J (1A V 1B). Instances of postulates (7) and (8) of RC'w are 1A :J (1A V 1B) and 1B 

:J (1A V 1B), respectively. Applying RC to both yields 1(1A V 1B) :, 11.A and 1(1A V 

1B) :J 11B, which, by (11) and transitivity, reduce to 1(1A V 1B) :, A and 1(1A V 1B) 

:J B. From these, 1(1A V 1B) :, (A & B) follows with the assistance of (6). Applying RC 

again yields 1(A & B) :, 11(1A V 1B), whence (11) and transitivity deliver the desired 1(A 

& B) :, (1A V 1B). 

From this de Morgan law, 

((A & B) & 1(A & B)) :J ((A & B) & (1AV 1B)) 

is easily derived , whence by distribution and transitivity we obtain 

((A & B) & 1(A & B)) :, (((A & B) & 1A) V ((A & B) & 1B)). 

With the assistance ( 4) and ( 5), this is reduced to 

((A & B) & 1(A & B)) :, ((A & 1A) V (B & 1B)). 

An instance of (12) 0
, which is derivable in RC'* by Lemma 5, is 

A 0 
:J ((1(A & B) :J A):, ((1(A & B) :J 1A) :J 11(A & B))), 

from which A0
:, ((A & 1A):, 11(A & B)) is easily derived. This yields 

(A0 & B0
):, ((A & 1A):, 11(A & B)) 

by ( 4) and transitivity. Permuting antecedents yields 

(A & 1A):, ((A0 & B0
) :J 11(A & B) ). 

A similar derivation gives 

(B & 1B) :J ((A0 & B0
) :J 11(A & B)) , 

whence by (9), we have 
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((A & ,A) v (B & ,B)) :J ((A O & B0
) :J 11(A & B)). 

Together with the last schema in the preceding paragraph, this yields 

((A & B) & ,(A & B)) :J ((A O & B0
) :J 11(A & B)), 

by transitivity. Permuting antecedents yields 

(A0 & B0
) :J ((A & B) & ,(A & B)) :J 11(A & B)), 

which, using exportation, is transformed into 

(A 0 & B0
) :J ((A & B) :J (,(A & B) :J 11(A & B))). 

Finally, an instance of C -reductio is 
w 

(1(A & B) :J .,,(A & B)) :J 11(A & B), 

which, together with the preceding sequent and prefixing, quickly delivers 

(A0 & B0
) :J ((A & B) :J 11(A & B)), i.e.(13) 0

. 

Lemma 8. Postulate (13)( 2) of RC1
2 is derivable in RC'*· 

Proof: By Lemma 7, (13) 0 is derivable in RC'*· Applying RC twice yields 

11(A0 & B0
) :J 11(A & B) 0

• 

Prefixing yields 

((A0 & B0
) :J 11((A0 & B0 )):J ((A 0 & B0

) :J 11(A & B) 0
), 

which is, by definition, 

(Ao & Bo)o :J ((Ao & Bo):J ,,(A & B)o). 

As an instance of (13) 0
, we have 

((A o)o & (Bo)o):) (Ao & Bo)o, 

or, by definition, 

which , together with the preceding schema, yields by transitivity, 

(A 2 & B2) :J ((AO & B0
) :J 11(A & B) 0

). 

From this, 

((A 2 & A 0 ) & (B2 & B0
)) :J 11(A & B) 0 

is easily derived using impcntation; but this is, by definition , 

As an instance of ( 1), we have 
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11(A & B) 0 :J (( A & B) 0 :J 11(A & B) 0
), 

which by definition, is just 

11(A & B) 0 :J (A & B) 2. 

Also, we have 

11(A & B) 0 
:J (A & B) 0 

by (11), whence we have 

11(A & B) 0 :J ((A & B) 2 & (A & B) 0
), 

which is, by definition, 

11(A & B) 0 :J (A & B)( 2). 

Together with the last schema in the preceding paragraph, this delivers the desired ( 13) (2) by 

transitivity. 

Lemma 9. Postulate (14) 0 of RC' 1 is derivable in RC'w (and therefore also in RC'*). 

Proof: An instance of prefixing is 

(11A:) 11(A VB)):) ((A:) 11A):) (A:) 11(A VB))). 

But the antecedent follows from postulate (7) of RC' w by two applications of RC, leaving 

(A :J 11A) :J (A :J 1,(A VB)), 

which is, by definition, 

A 0 
:J (A :J 11(A VB)). 

From this, 

(AO & B0
) :J (A :J 11(A VB)) 

is easily derived, whence permuting antecedents gives 

A :J ((A O & B0
) :J 11(A VB)). 

A similar derivation yields 

B :J ((A O & B0
) :J 11(A VB)). 

These two schemata yield, by (9), 

(AV B) :J ((AO & B0
) :J 11(A VB)). 

Permuting antecedents delivers 

(A0 & B0
) =:) ((~VB) :J 11(~ VB)), 

which is (14) 0 by definition. 
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Lemma 10. Postulate (14) (2) of RC1
2 is derivable in RC' "' · 

Proof: Starting with (14) 0
, which is derivable in RC'* by -Lemma 9, t he schema (A (2) & 3(2)) 

:) 11(A V B) 0 can be derived in analogy with the derivation of (A (2) & B(2)) :) 11(A & B)0 

from (13) 0 in the first paragraph of the proof of Lemma 8. Also, as in t he second paragraph 

of that proof 11(A V 8) 0 
:) (A V B) (2) can be derived. Transitivity then delivers the 

desired (14)(2). 

Although postulate (15) 0 of RC' 1 is not derivable in RC'*, by the proof of Theorem 7, 

the following variant of (15) 0 is. 

Lemma 11. In RC'*, the schema (A( 2) & B0
):) (A:) B) 0 is derivable. 

Proof: An instance of (12) 0
, which is derivable in RC'* by Lemma 5, is 

A0 :J((1B :J A) :J ((1B :J 1A) :J 11B)), 

from which 

AO :J(A :J(1A :J B)) 

. is easily derived using permutation, (1) and transitivity. Permuting 

antecedents yields 

1A :J(A O :J (A :J B)). 

Also easily derived, with the assistance of ( 1), is 

B :J(A0 :J(A :J B)). 

These two schemata yield, by (9), 

ClA V B) :J (AO :J (A :J B)), 

from which 

(AO & ( 1A V B)) :J ( A :J B) 

follows straightforwardly. Applying RC twice gives 

11(A O & (1A VB)) :J 11(A :J B). 

Prefixing yields 

((A0 & (1A v B)) :J 11(A0 & (1A VB)) :J ((A 0 & (1A VB)) :J 11(A :J B)), 

which is, by definition, 

(A0 & (1A v B)) 0 :J ((A0 & (1A VB)) :J 11(A :J B)). 

An instance of (13) 0 which is derivable in RC'* by Lemma 7, is 
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((A 0 )
0 & (1A V B) 0

) :J (AO & (1A V B)) 0
, 

which, together with the preceding schema, yields by transitivity, 

((A 0
)

0 & (1A V B) 0
) :J ((A0 & (1A VB)) :J 11(A :J B)). 

This is straightforwardly reduced to 

(((A0
)

0 & A0
) & (1A V B) 0

):J ((1A VB) :J 11(A :J B)), 

which is, by definition, 

(A( 2) & (1A V B) 0
) :J (("lA VB) :J 11(A :J B)). 

An instance of (14) 0
, which is derivable in RC'* by Lemma 9, is 

((1A) 0 & B0
) :J (1A V B) 0

. 

But (1A) 0 is derivable in RC'w by Lemma 2, so this reduces to 

B0 
:J C-lA V B) 0

, 

which quickly leads to 

(A (2) & B0
) :J (A (2) & (1A V B) 0

). 

Together with the last schema in the preceding paragraph, this yields, by transitivity, 

(A(2) & B0
) :J ((1A v B) :J ,,(A :J B)). 

Finally, it is easy to derive 

(A :J B) :J ("lA V B) 

in RC'w' using (7), (8), (9) and (11), from which suffixing yields 

( (1A V B) :J 11(A :J B)) :J ( (A :J B) :J 11(A :J B) ), 

which is, by definition, 

((1A VB) :J 11(A :J B)) :J (A :J B) 0
• 

Together with the last schema in the preceding paragraph, this delivers, by transitivity, 

the desi red 

(A(2) & B0
) :J (A :J B) 0

. 

Lemma 12. Postulate (15)(2) ofRC'2 is derivable in RC'*· 

Proof: Applying RC twice to the schema of Lemma 11 yields 

11(A(2) & B0
) :J 11(A :J B) 0

. 

Prefixing yields 

((A( 2) & B0
) :J 11(A(2) & B0

)) :J ((A(2) & B0
) :J 11(A :J B) 0

) , 
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which is, by definition, 

(A(2} & Bo)o :J ((A (2) & Bo) :J ,,(A :J B)o). 

An instance of postulate (13) 0
, which is derivable in RC'* by Lemma 7, is 

((A(2))o & (Bo)o) :J ((A (2) & Bo)o; 

hence, by transitivity, we have 

((A(2))o & (Bo)o) :J ((A (2) & Bo) :J ,,(A :J B)o), 

from which it is straightforward to derive 

But (A( 2)) 0 is, by definition, (A 2 & A0
)

0
. Again by (13 ) 0

, we have 

which is, by definition, 

From this follows 

or more simply, 

A(3) :J ((A(2))o & A(2)). 

But by Lemma 3, A(2) :J A( 3) is derivable in RC'w; hence, transitivity yields 

A(2) :) ((A(2))o & A(2)). 

Also, ((B 0
)

0 & B 0
) is just 3(2), so the last schema in the preceding paragraph reduces to 

( A ( 2) & B ( 2)) :J ,-, ( A :J B) 0 • 

An instance of ( 1) is 

11(A :J B) 0 :J ((A :J 8) 0 
:J ,,(A :J 8)

0
), 

which is, by definition, 

11(A :J B) 0 
:J (A :J 8) 2. 

Also we have 

11(A :J B)
0 

:J (A :J 8)
0 

as an instance of ( 11) whence we have 

11(A :J 8) 0 :J (A :J 8)(2). 

Together with the last schema in the preceding paragraph , this yielJs. by transitivity , 

(A( 2) & 8(2)) :J (A :J 8)(2) , 

~vhich is the desired (15) (2). 
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Lemma 13. Postulate (16)
0 of RC'1 is derivable in RC'w (and hence also in RC'*). 

Proof: An instance of postulate (1) of RC'w is (1B) 0 
:J (B 0 

:J {1B) 0
). By Lemma 2, (1B) 0 

is derivable in RC'w' leaving B
0 

:J (1B)
0

, i.e. (16)
0

. 

Lemma 14. Postulate (16)(2) of RC'2 is derivable in RC'w (and hence also in RC'*). 

Proof: An instance of postulate (1) of RC'w is (1B)(2) :J (B(2) :::) (1B)(2)). By Lemma 2, 

(1B)( 2) is derivable in RC'w' leaving B(2) :J (1B)(2) , i.e. (16)(2). 

Theorem 8. RC1
2 = RC'*· 

Proof: By Lemma 4, RC'2 contains RC'*· Conversely, by Lemmas 6, 8, 10, 12 and 14, RC'* 

contains not only RC' , but also all of the postulates which are added to RC' in the 
w w 

construction of RC' 2. 

Theorem 9. RC'1 =RC'*+ (15) 0
• 

Proof: By Lemma 4, RC\ contains RC'*· Conversely, by Lemmas 5, 7, 9 and 13, RC'* 

contains not only RC' , but also all of the postulates which are added to RC' in the w w 

construction of RC' 1, with the exception of ( 15) 0 • 

We are now in a position to comment further on the paraconsistency conditions. It was 

noted in Section 5 that the schema B ( n) should not be derivable in the systems RC' n ( 1 ~ n < 

w), for if it were, then so would be unqualified reduct,£0, collapsing these systems into classical 

logic. And indeed, Theorem 4 establishes that _ neither B ( n) nor reductio is derivable in 

RC'n(l ~ n ~ w). But by Lemma 2, the schema (1B)(n) is derivable in RC'w' and hence also 

in each RC' n (l ~ n < w); consequently, 1-reduct£0 is also derivable in these latter systems, as 

in the proof of Lemma 4. It quickly follows that a variant of the paraconsistency- defeating 

(A & 1A) :::) Bis also derivable in these systems. 

Theorem 10. In RC'n(l ~ n < w), the schema (1A & 11A):::) Bis derivable. 

Proof: An instance of 1-reductio is (1B :::) 1A) :::) ((1B :J 11A) :J 11B) , which is easily 

reduced to (1A & 11A) :::) 11B with the assistance of (1), requiring only ( 11) and 
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transitivity to deliver (1A & 11A) :J B. 

As noted in ection 5, the deriv ability of ( A & IA) :J B would explicitly violate 

condition (I). Does the derivability of this variant substantively violate (I)? 

The answer is arguably that it does not, for there is no reason to expect that 

inconsistent theories based on any RC' n ( 1 ~ n < w) would substantially collapse. Certainly, 

t hose containing a contradiction of the form IA & 11A would collapse totally, but there is 

nothing to suggest that this would be true of inconsistent theories in general. There is 

therefore nothing in the results of this section which indicates that condition (I) is not 

substantively satisfied by the RC' -systems. However, it remains that, even though the 

derivability of (1B)(n) may not be in this sense damaging, neither is it well-motivated, for 

there is no particular reason why negated formulas should in general be expected to "behave 

classically". 

As far as condition (II) is concerned, there is also nothing in this section which suggests 

that the RC' -systems fail to contain significant parts of classical logic which would not 

interfere with the satisfaction of (I) if they were incorporated. On the contrary, the 

derivability of (1A & 11A) :J B suggests that, if anything, they approximate classical logic a 

little too closely. And in enjoying SE, the systems RC' n (l ~ n ~ w) come closer to satisfying 

(II) than do either C'n(l ~ n ~ w) or the original Cn(l ~ n ~ w). 

Finally the fact that there are only three distinct systems in RC'n(l ~ n ~ w), though 

perhaps a little surprising, need not diminish their philosophical interest. For even with the 

original infinite hierarchy of C-systems, the interesting ones are those at the extremes, the 

remainder, as noted in [19], being somewhat less obviously motivated. 

Of course, these considerations are in no way conclusive for the .:-nethod of variation 

which has been dealt with in this half of the chapter, for we have investigated only one way of 
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redefining B0
, resulting in the systems C' n(l ~ n ~ w), and only one way of extending t hese 

systems so as to secure SE. It may be, for example, that the hierarchy EC' n ( 1 ~ n ~ w) 

would not exhibit a similar degree of collapse, or would prove more satisfactory in terms of 

t he paraconsistency conditions. However, as the final result of this section, we show that at 

least EC' 1 shares some of the curious features of the RC' -systems. For the derivability of 

(,B) 0 in RC' 1 does not in fact depend on the presence of RC. 

Theorem 11. In C' 1 ( and therefore in EC'i), the schemata (,B) 0 , 1-reduct,io and (,A & 

11A) :J B are all derivable. 

Proof: An instance of postulate (1) of C1
1 is 11B :J (B.::, 11B), i.e. 11B :J B0

. Together 

with postulate (16) 0
, this yields, by transitivity, 11B :J (,B) 0

• Another instance of (1) is 

111B :J ("lB :J 111B), i.e. 11,B :J ("1B) 0
• With the assistance of (9), these two 

schemata yield (11B V 111B) :J ("1B) 0
• But the antecedent is an instance of postulate 

(10), leaving ("1B) 0
. Hence, from (,B) 0 :J ((A :J 1B) :J ((A :J 11B) :J ,A)), which is an 

instance of postulate (12) 0 of C'i, 1-reductio follows by (3). Using 1-reductio, (,A & 11A) 

:J B is then further derived as in the proof of Theorem 10. 

7. ALTERNATIVE BASES 

We now turn to the second method of variation described in Section 1. Several 

alternative bases are to be found among the axiomatic systems constructed in Chapter 3. We 

will consider three of these: NC , OC + (12) and OC . Again, it will turn out that the w w w 

hierarchies NCn(l ~ n ~ w), OCn(l ~ n ~ w) + (12) and OCn(l ~ n ~ w) based on these 

systems do not enjoy SE; and we will consider the effect of adding RC in order to secure this 

property. The respective bases of these extended hierarchies, therefore, will be RN C , ROC w w 

+ (12) and ROCw. We note that the first two of these are the respective axiomatic 

counterparts of RJ 0_5 and RJ 0.1, which were found in Chapter 4 to be the strongest members 

of, respectively, the intermediate and intuitionistic branches of subsystems of J 1 extended by 

RC which satisfy the paraconsistency conditions. (The strongest member of the 

dualintuitionistic branch is RJ0 .4, the axiomatic counterpart of which is RCw , already 

investigated as a base system in Chapter 5 and the first half of this chapter). The resul ts 
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obtained for the hierarchies based on RNCw and ROCw + (12) will lead us to consider the still 

weaker ROCw (the axiomatic counterpart of RJ0), which is the weakest of the axiomatic 

systems incorporating RC defined in Chapter 4. 

8. THE NC-SYSTEMS 

The base system NCw is constituted by postulates (1) to (9) of Cw, which axiomatise 

positive intui tionistic logic, together with the double-negation postulates ( 11) and ( 12), only 

the first of which is incorporated in Cw. The systems NCn(l ~ n < w) are constructed on the 

basis of NC exactly as the original C (1 ~ n < w) are constructed on the basis of C : each w n w 

NCn is formed by adding to NCw postulates (12)(n) to (16)(n). The schema B(n) is defined in 

terms of B0
, and B0 is defined as 1(B & 1B), exactly as in the original C-systems. 

We establish initially that the systems NCn(l ~ n ~ w) form a linear hierarchy. A 

lemma is required. 

Lemma 15. In each NCn(l ~ n < w), the schema B(n):) B(n+l) is derivable. 

Proof: An instance of postulate (6) of each NCn(l ~ n < w) is B(n) :) ((1B)(n) :) (B(n) & 

ClB)(n))). But B(n) :) (1B)(n) is an instance of postulate (16)(n); by (2), therefore, we have 

B(n) :) (B(n) & (1B)(n)). An instance of postulate (13)(n) is (B(n) & (1B)(n)) :) (B & 

1B)(n); by transitivity therefore, we have B(n) :) (B & 1B)(n). Another instance of (16)(n) 

is (B & 1B)(n) :) (1(B & 1B))(n); transitivity again yields B(n) :) (1(B & 1B))(n). But 

(1(B & 1B)) ( n) is , by definition, (B0
) ( n), and we have (B 0

) ( n) :) (B0
) n; transitivity yields 

B(n) :) (B 0 )n. But (B 0 )n is just Bn+ l , so we have B(n):) Bn+1, from which B(n):) (Bn+l & 

B(n)) follows straightforwardly. But , by definition, this is exactly B(n) :) g(n+ l )_ 

Theorem 12. For 1 ~ n < w, each NC +l is a subsystem of NC , and NC is a subsystem of n n w 

Proof: That NC is a subsystem of every NC (1 ~ n ~ w) is immediate from the construction 
w n 

of these systems. To show that, for 1 ~ n < w, each NCn+l is a subsystem of NCn, it suffices 

to establish that postulates (12)(n+l) to (16)(n+l) of NCn+l are derivable in NCn. 
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From postulate (12/n) of NCn and B(n+ l ) :J B(n), which 1s an instance of (5), 

(12)(n+ l) follows by transitivity. 

From postulate (13)(n), (A(n+l) & B{n+ l)) :J (A & B) (n) follows as in the preceding 

paragraph. But (A & B)(n) :J (A & B)(n+ l) is derivable in NCn by Lemma 15, whence 

t ransitivity yields the desired (13)(n+l). 

A similar argument shows that (14)(n+l) to (16)(n+l) are also derivable in NCn. 

Thus, NCn(l ~ n ~ w) form a linear hierarchy of (not necessarily distinct) systems, with 

strongest member NC1 and weakest member NCw. 

Moreover, none of these systems is equivalent to C0 ( classical logic) , or to any C n (I ~ n 

~ w). 

Theorem 13. For 1 ~ n ~ w, NC n :/= Ca. In particular, the schema ( A & 1A) :> B is not 

derivable in Cn(l ~ n ~ w). 

Proof: The following matrices validate the postulates of each NCn(l ~ n ~ w), but invalidate 

(A & 1A) :> B when A is assigned the value 1 and Bis assigned the value 4. 

:J 0 1 2 3 4 i & 0 1 2 3 4 V 0 1 2 3 4 

*O 0 0 0 0 4 4 0 0 1 2 3 . 4 0 0 0 0 0 0 

*l 0 0 0 0 4 2 1 1 1 3 3 4 1 0 1 0 1 1 

*? - 0 0 0 0 4 1 2 2 3 2 3 4 2 0 0 2 2 2 

*3 0 0 0 0 4 4 3 3 3 3 3 4 3 0 1 2 3 3 

4 0 0 0 o_ 0 3 4 4 4 4 4 4 4 0 1 2 3 4 

(Only the value 4 is not designated). 

Theorem 14. No NCn(l ~ n ~ w) is equivalent to any Cn(l ~ n ~ w). 

Proof: The following matrices validate the postulates of NCn(l ~ n ~ w), but invalidate A V 

1A, which is postulate (10) of each Cn(l ~ n ~ w), when A is assigned the value 2. 



:J O 1 2 --, 

*O O 1 2 1 

1 0 0 0 0 

2 0 0 0 2 

& 0 1 2 

0 0 2 2 

1 2 1 2 

2 2 2 2 

( Only the value O is designated). 
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V O l 2 

0 0 0 0 

1 0 1 1 

2 0 1 2 

As with the original C-systems, the schemata and rules of C n (1 ~ n ~ w) do not suffice 

to guarantee SE. 

Theorem 15. The systems NCn (1 ~ n ~ w) do not enjoy SE. 

Proof: Easily derived in NCw, and therefore in each NCn(l ~ n ~ w), are the schemata A= 

(A & (A :J A)) and 1A :J 1A. If NCn(l ~ n ~ w) enjoyed SE, then 1A :J 1(A & (A :J A)), 

the result of substituting A & (A :) A) for ( one occurence of) A in 1A :) 1A, would also be 

derivable in these systems. But the matrices in the proof of Theorem 14, which validate the 

postulates of NCn(l ~ n ~ w), invalidate this schema when A is assigned the value 1. Hence, 

these systems do not enjoy SE. 

To secure SE, the obvious strategies are again to add RC or EC. The systems so formed 

are , respectively, RNCn(l ~ n ~ w) and ENCn(l ~ n ~ w). We will investigate only the 

former family of systems. 

9. THE RNC-SYSTEMS 

Theorem Jo. RNCw ":f. C0. In particular, the schema (A & 1A) :J B is not derivable in 

RNC. 
w 

Proof: The following matrices (from the proof of Theorem 4 of Chapter 4) validate the 

postulates of RNCw, but invalidate (A & 1A) :) B when A is assigned the value 1 and B is 

assigned the value 2. 
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:) 0 1 2 -, & 0 1 2 V 0 1 2 

0 0 1 2 2 0 0 1 2 0 0 0 0 . 

1 0 0 2 1 1 1 1 2 1 0 1 1 

2 0 0 0 0 2 2 2 2 2 0 1 2 

(Only the value O is designated). 

Thus, the addition of RC to NCw does not collapse this system into classical logic; and 

in particular the paraconsistency-defeating (A & 1A) :) B remains underivable. 

Unfortunately, the same is not true of the remaining NCn(l ( n ( w). Several lemmas 

are required. 

Lemma 16. In RNC , the schema A(i) :J A(i+l) is derivable, for 1 ( i < w. 
w 

. . 
Proof: An instance of postulate ( 5) of RN Cw is (Ai & 1A i) :) 1A i. Applying RC yields 

,,Ai :J ,(Ai & ,Ai), which is by definition ,,Ai :J A2·+1. By (12), this reduces to A2 
:) 

Ai+l; but we have A(i) :J Ai, so by transitivity, we get A(i) :J Ai+l, which quickly leads to 

Corollary. In RNC , the schema AO :J A (i) is derivable, for I ( i < w. 
w 

Proof: This follows from Lemma 16 by a straightforward inductive argument. 

Lemma 17. In RN Cw, the schema AO :J(A V 1A) is derivable. 

Proof: Instances of postulates (7) and (8) of RNCw are 11A :J(11A V 1A) and 1A :J 

(11A V ,A), respectively. Applying RC to each yields 1(11A V 1A) :J 111A and 

1(1,A V 1A) :) 11A, which, with the assistance of (11), reduce to 1(11A V 1A) :) 1A 

and 1(1,A V 1A) :JA. From these, 1(11A V 1A) :J (A & ,A) quickly follows through 

(6). Applying RC again yields 1(A & 1A) :J 11(11A V ,A), from which ,(A & 1A) :J (A 

V 1A) quickly follows with the assistance of (11). But this is just AO :J (AV 1A). 

Lemma 18. In each NCn(l ( n < w), the schema AO is derivable. 

Proof: An instance of postulate (4) of each RNCn(l ( n < w) is (A & 1A) :J A. Applying RC 
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yields 1A :J 1(A & 1A), which is by definition, IA :J A0
• An instance of (5) is (A & 1 A) :J 

IA which , together with the preceding schema, yields by transitivity , (A & 1A) :J A 0 . By 

the Corollary to Lemma 16, A0 :J A (n) is derivable in RNC and hence in each RNC (1 ~ n < 
w n 

w); by transitivity therefore we have (A & 1A) :J A(n). Let T be a theorem of RNC . An 
w 

instance of postulate (12)(n) of each RNCn(l ~ n < w) is A(n) :J ((T :J A) :J ((T :J 1A) :J 

1T)), which is easily reduced to A(n) :J ((A & 1A) :J 1T). Together with the preceding 

schema, this yields by transitivity (A & 1A) :J ((A & 1A) :J 1T), which reduces to (A & 

1A) :J 1T with t he assistance of (2). Applying RC yields 11T :J 1(A & 1A), i.e. 11T :J 

A 0 • But 11 T follows by (12) from T, which has been assumed to be a theorem of RNC ; 
w 

this leaves the desired AO
• 

Theorem 17. For 1 ~ n < w, RNCn = C0. • 

Proof: By Lemma 17, the schema AO :J(A V 1A) is derivable in RNC ; and by Lemma 18, 
w 

A0 is derivable in each RNCn(l ~ n < w). It follows that AV 1A is also derivable in each 

RNCn(l ~ n < w). But this is postulate (10) of the C-systems. It follows that, for 1 ~ n < w, 

each RC is a subsystem of RNC . But by Theorem 6 of Chapter 5, each such RC = C
0

; n n n 

hence , C0 is a subsystem of each RNCn(l ~ n < w), and since each RNCn is also a subsystem 

of C0, it follows that each RNCn = C0, for 1 ~ n < w. 

10. THE OC + (12) -SYSTEMS 

The base system OCw + (12) is obtained from NCw simply by omitting postulate (11). 

Thus, OCw + (12) is constituted by postulates (1) to (9) , which axiomatise positive 

intuitionistic logic ( or OCw , when the vocabulary is t aken to include 1), together with the 

intuitionistic double-negation postulate (12). This system is therefore intuitionistic: every 

schema derivable in OCw + (12) is also intuitionistically derivable. The systems OCn (l ~ n < 

w) + ( 12) are constructed on the basis of OC w + ( 12) exactly as the original C n ( 1 ~ n < w) 

are constructed on the basis of Cw: each OCn + (12) is formed by adding to OCw (12) 

postulates (12)(n) to (16)(n), with B(n) and B0 defined as in the C-systems. 
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Since (12)(n) to (16)(n) are intuitionistically derivable, the systems OCn(l ~ n ~ w) + 

( 12) are all intuitionistic. In fact, they are subsystems of the still weaker HM ( Johansson 's 

"'minimal calculus"), which is constituted by postulates ( 1) to (9) together with the reductio 

schema (A:) B):) ((A:) 1B):) ,A) (see [8]) . 

As with the NC-systems, it is straightforward to establish that OCn(l ~ n ~ w) + (12) 

form a linear hierarchy of (not necessarily distinct) systems, with strongest member OC1 + 

(12) and weakest member OCw + (12). 

Lemma 19. In each OCn(l ~ n < w) + (12), the schema B(n):) B(n+l) is derivable. 

Proof: As for Lemma 15. 

Theorem 18. For 1 ~ n < w, each OCn+l + (12) is a subsystem of OCn + (12), and OCw + 

(12) is a subsystem of every OCn(l ~ n ~ w) + (12). 

Proof: As for Theorem 12, invoking Lemma 19 where appropriate. 

Moreover, none of the systems OCn(l ~ n ~ w) + (12) is equivalent to HM (or, 

t herefore, to intuitionistic or classical logic), or to any Cn(l ~ n ~ w) or NCn(l ~ n ~ w). 

Theorem 19. For 1 ~ n ~ w , OCn + (12) :/= HM. In particular, the reductio schema is not 

derivable in OCn(l ~ n ~ w) + (12). 

Proof: The matrices in the proof of Theorem 13, which ~alidate the postulates of NC~ (1 ~ n 

~ w) and therefore also those of OCn(l ~ n ~ w) + (12), invalidate reductio when A is 

assigned the value O and B is assigned the value 1. 

Theorem 20. No OCn(l ~ n ~ w) + (12) is equivalent to any Cn(l ~ n ~ w) or to any NCn(l 

~ n ~ w). 

Proof: It suffices to note that all of the systems m the latter hierarchies incorporate the 

intuitionistically underivable postulate ( 11). 

As with the C-systems and NC-systems, the postulates of OCn(l ~ n ~ w) + (12) do not 

suffice to guarantee SE. 
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Theorem 21. The systems OCn(l ~ n ~ w) + (12) do not enjoy SE. 

Proof: As for Theorem 15. 

To secure SE, the obvious strategies are again to add RC or EC. We will investigate 

only the addition of RC, resulting in the systems ROCn(l ~ n ~ w) + (12). 

11. THE ROC + (12) -SYSTEMS 

Since t he rule RC is derivable in HM, it follows that ROCn(l ~ n ~ w) + (12) are also 

subsystems of HM. Moreover, ROCw + (12) at least is a proper subsystem of HM. 

Theorem 22. ROCw + (12) -:/= HM. In particular, the reductio schema is not derivable in 

ROCW + (12). 

Proof: The matrices in the proof of Theorem 16, which validate the postulates of RNCw and 

therefore also those of ROCw + (12), invalidate reductio when A is assigned the value O and B 

is assigned the value 1. 

Thus, the addition of RC to OCw + (12) does not collapse this system into HM. 

Unfortunately , the same is not true of the remaining OCn(l ~ n ~ w) + (12). Several lemmas 

are required. 

Lemma 20. In ROCw + (12), the schema A(i) :J A(i+l) is derivable, for 1 ~ i < w. 

Proof: As for Lemma 16 (since postulate (11) of RNCw is not involved in the proof of Lemma 

16). 

Corollary. In ROCw + (12), the schema A0 
:J A(i) is derivable, for 1 ~ £ < w . 

Proof: As for the Corollary to Lemma 16. 

Lemma 21. In each ROCn(l ~ n < w) + (12), t he schema AO is derivable. 

Proof: As for Lemma 18. 

Lemma 22. In each ROCn(l ~ n < w) + (12) , the schema A(n) is derivable. 
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Proof: This follows from Lemma 21 and the Corollary to Lemma 20. 

Theorem 23. For 1 ~ n < w, ROCn + (12) = HM. 

Proof: By Lemma 22, the antecedent of postulate (1 2)(n) of each ROCn(l ~ n < w) + (12) is 

derivable in that system, leaving the reductio schema. This suffices to collapse each ROCn(l 

~ n < w) + (12) into HM. 

Thus , the addition of RC to OCn(l ~ n < w) + (12) results in HM. However, HNI is too 

strong for paraconsistent purposes, for easily derived from reducti"o in HM is the schema (A & 

1A) :) 1B. This schema substantively ( though not explicitly) violates condition (I), for its 

presence ensures that an inconsistent theory is thoroughly inconsistent: for every formula in 

the theory, its negation is also in the theory. (This is also the ground on which the system 

RJ0_3 was rejected in Chapter 4). 

We turn instead to OC , the weakest of the axiomatic systems defined in Chapter 3, as 
w 

an alternative basis. 

12. THE QC-SYSTEMS 

The base system OCw is constituted by postulates (1) to (9), and differs from positive 

intuitionistic logic only in that its vocabulary includes the connective 1. The systems OCn(l 

~ n < w) are constructed on the basis of OC w exactly as the original C n ( 1 ~ n < w) are 

constructed on the basis of Cw: each OCn is formed by adding to OCw postulates (12)(n) to 

(16)(n), with B(n) and B0 defined as in the C-systems. 

As with the NC-systems and OC + (12)-systems, it is easy to establish that OCn(l ~ n 

~ w) form a linear hierarchy of ( not necessarily disntinct) systems, with strongest member 

ocl and weakest member OCW. 

Lemma 23. In each OCn(l ~ n < w), the schema B(n):) B(n+ l) is derivable. 

Proof: As for Lemma 15. 
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Theorem 24. For 1 ~ n < w, each OC + l is a subsystem of OC , and OC is a subsystem of n n w 

Proof: As for Theorem 12, invoking Lemma 23 where appropriate. 

Moreover, none of the systems OCn (l ~ n ~ w) is equivalent to HM (or, therefore , to 

inuitionistic or classical logic), or to any OCn(l ~ n ~ w) + (12) (or, therefore, to any NCn(l 

~ n ~ w)), or to any Cn(l ~ n ~ w). 

Theorem 25. For 1 ~ n ~ w, OCn i= HM. In particular , the reductio schema is not derivable 

Proof: This follows from Theorem 19, since, for 1 ~ n ~ w, each OC is a subsystem of OC n n 

+ (12). 

Theorem 26. No OCn(l ~ n ~ w) is equivalent to any OCn(l ~ n ~ w) + (12). 

Proof: The following matrices (from the proof of Theorem 19 of Chapter 4) validate the 

postulates of OCn(l ~ n ~ w) , but invalidate postulate (12) of OCn(l ~ n ~ w) + (12) when 

A is assigned the value 0. 

*O 

1 

0 1 

0 1 

0 0 

-, 
1 

1 

(Only the value O is designated). 

& 0 1 

0 0 1 

1 1 1 

V O 1 

0 0 0 

1 0 1 

Theorem 27. No OCn(l ~ n ~ w) is equivalent to any Cn(l ~ n ~ w) . 

Proof: It suffices to note that all of t he systems in the latter hierarchy incorporate the 

intuitionistically underivable postulates (10) and (1 1). 

As with the C-systems, NC-systems and OC + (12)-systems, the postulates of OCn (l ~ 

n ~ w) do not suffice to guarantee SE. 

Theorem 28. The systems OC n ( 1 ~ n ~ w) do not enjoy SE. 

Proof: As for Theorem 15. 
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To secure SE, the obvious strategies are again to add RC or EC. We will investigate 

only the addition of RC, resulting in the systems ROCn(l ~ n ~ w). 

13. THE ROC-SYSTEMS 

For 1 ~ n ~ w, each ROCn is a subsystem of ROCn + (12). It follows ROCn(l ~ n ~ 

w) are all subsystems of HM. Unlike the ROC + (12)-systems, however, none of the ROC­

systems is equivalent to HM. 

Theorem 29. For 1 ~ n ~ w, ROC :/= HM. In particular, the reductio schema 1s not n 

derivable in ROCn(I ~ n ~ w). 

Proof: The matrices in the proof of Theorem 26 validate not only the postulates of OC n (1 ~ 

n ~ w), but also the rule RC; however, they invalidate reductio when A is assigned the value 1 

and B is assigned the value 0. 

Despite the fact that reduct,io is not derivable in ROCn(l ~ n ~ w), the undesirable (A 

& 1A) :J 1B, is still derivable in at least ROC1. 

Theorem 30. In ROC 1, the schema (A & 1A) :J 1B is derivable. 

Proof: An instance of postulate (12) 0 of ROC 1 is AO 
:J ((B :J A) :J ((B :J 1A) :J 1B)), which 

is easily reduced to AO :J ((A & 1A) :J 1B). But (A & 1A) :J AO is also easily derived in 

ROC 1, as in the proof of Lemma 18; hence, by transitivity, we have (A & 1A) :J ( (A & 1A) 

:J 1B), which, with the assistance of (2), reduces to (A & 1A) :J 1B. 

However, this result does not extend to the remaining ROC-systems. 

Theorem 31. For 2 ~ n ~ w, ROCn :/= ROC 1. In particular, the schema (A & 1A) :J I Bis 

not derivable in ROCn(2 ~ n ~ w). 

Proof: The following matrices validate the postulates of ROCn(2 ~ n ~ w), but invalidate (A 

& 1A) :J 1B when A is assigned the value 2 and B is assigned the value 0. 
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:J 0 1 2 3 4 i & 0 1 2 3 4 V 0 1 2 3 4 

*O 0 1 2 3 4 3 0 0 1 2 3 4 0 0 0 0 0 0 

1 0 0 2 3 4 3 1 1 1 2 3 4 1 0 1 1 1 1 

2 0 0 0 3 3 1 2 2 2 2 4 4 2 0 1 2 1 2 

3 0 0 2 0 2 3 3 3 3 4 3 4 3 0 1 1 3 3 

4 0 0 0 0 0 1 4 4 4 4 4 4 4 0 1 2 3 4 

(Only the value O is designated). 

Despite the fact that Theorem 31 shows ROC1 and ROC2 to be distinct, there is still a 

great deal of collapse in the ROC-hierarchy. Again, several lemmas are required. 

Lemma 24. In ROC , the following schemata are derivable, for 1 ~ £ < w: w 

(i) -, B :J B0 

(ii) 11B :J B0 

(iii) ,Bi :J Bi+ I 

(iv) ,,Bi :J Bi+ I_ 

Proof: Schema (i) follows by RC from (B & 1B) :J B, which is an instance of postulate (4) of 

ROC. 
w 

Schema (ii) follows by RC from (B & ,B) :) 1B, which is an instance of postulate (5). 
. . . 

Schema (iii) fallows by RC from (Bi & 1B1
) :J B\ which is an instance of ( 4). 

. . . 
Schema (iv) follows by RC from (B1 & 1B1

) :J 1B\ which is an instance of (5) 

. . 
Lemma 25. In ROC , the schema 1B1 :J B2 is derivable, for 1 ~ i· < w. w 

Proof: For i = 1, we have 1B :J B0 by (i) of Lemma 24, from which (B & 1B) :J B0 follo'-\'S 

by (5) and transitivity. Applying RC yields the desired 1B0
:) B0

• 

For ,,:> 1, we have 1Bi-l :J Bi' by (iii) of Lemma 24 , from which (Bi-l & 1 Bi-l) :J Bi 
. . 

follows by (5) and transitivity. Applying RC yields the desired 1Bi :) Bi. 

In the following lemmas, T represents an arbitrary theorem of ROCw , and (11)1T 

represents T preceded by 2£ occurences of 1, for 1 ~ -i < w . 
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. . 

Lemma 26. In ROCw , the schema ("11)1T = Tt is derivable, for 1 ~ i < w. 

Proof: The proof proceeds by induction on the value of ,i. 

Base case (i == 1). Evidently, we have in ROCw both 1T :J T and 1T :J 1T; together, these 

yield 1T :J(T & 1T) with the assistance of (6). Applying RC yields T 0 :J 11T. 

Conversely, we have 11T :J T 0 by (ii) of Lemma 24. Hence, we have 11T = T 0
. 

Inductive step ('i > 1). On inductive hypothesis, we have (11)i-l T = Ti-l, and in particular, 

we have (,,)i-l T :J Ti-l_ Applying RC twice yields 11 (,,)i-l T :J 1,Ti-l, i.e. (,,i) T 

:J 1,Ti-l_ But by (iv) of Lemma 24, we have 1,Ti-l :J Ti; transitivity, therefore, yields 

(,,i) T :J Ti. Conversely, again on inductive hypothesis, we have (,,)i-l T = Ti-l, and in 

particular, Ti-l :J (,,)i-l T. Applying RC yields 1(1,)i-l T :J ,Ti-l_ By Lemma 25, we 

have ,Ti-l :J Ti-l, and therefore ,Ti-l :J (Ti-l & ,Ti-l ). By transitivity, then, we have 

1(,-,i-l) T :J (Ti-l & ,Ti-l ). Applying RC again yields Ti :J 11(1,)i-l T, i.e. Ti :J 

. . . . 
(11)1 T. Together with (11)1 T ::, T 1

, derived above, this gives the desired (11) 1 T = Ti. 

Lemma 27. In ROCw, the schema Ti+l :J Ti is derivable, for 1 ~ ,i < w. 

Proof: The proof proceeds by induction on the value of i. 

Base case (i == 1). We have 11T :J Tin ROCw; applying RC twice yields 1111T :J 11T. 

But by Lemma 26, we have 11T = T 0 and 1111T = T 2. Hence, we have T 2 :J T 0
. 

Inductive step ( i > 1). On inductive hypothesis, we have Ti-l + 1 :J Ti-l, i.e. Ti :J Ti-l. 

Applying RC twice yields ,,Ti :J 1,Ti-l _ But by Lemma 26, we have ,,Ti = (Ti) 0 , i.e. 

1,Ti = Ti+1, and ,,Ti-l = (Ti- 1) 0
, i.e. ,,Ti-l = Ti. Hence we have Ti+l :J Ti. 

Corollary. In ROCw, the schema T(i) = Ti is derivable, for 1 ~ i < w. 

Proof: This follows by a straightforward inductive argument from Lemma 27. 

Lemma 28. In each ROCn+l (1 ~ n < w), the schema B(n) :J (,Bn :J 1T) is derivable. 

Proof: We note firstly that by Lemma 23, we have B(n+l) ::, B(n+2), (B 0 )(n+l) :J 

(B0 )(n+ 2), and in general, for 1 ~ k < w, (Bk)(n+l) :J (Bk)(n+ 2) in each OCn+l(l ~ n < w) 

and therefore in each ROCn+l(l ~ n < w). But we also have B(n+Z) :J (B0 ) (n+l)~ (B 0 )(n+2) 

:J (B 2)(n l) and in general, (Bk)(n+ 2) :J (Bk+l)(~+l); so by transitivity we obtain B(n+l) :J 
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(B 0 ) (n+ l ), (B0 )(n l ) :J (B2)(n+l), and in general, (Bk)(n+l) :J (Bk-r l )( n+l)_ These latter 

schemata deliver, with the assistance of transitivity, the result ·13 (n+ l) :J (Bk) (n+l), and in 

par ticular B(n+ l) :J (Bn)(n+l). An instance of postulate (12) (n+l ) of each ROC ~
1

(1 ~ n < 
n , 

w) is (Bn )( n l ) :J ((T :J Bn) :J ((T :J 1Bn) :J I T), which is easily reduced, using 

permutation, (1) and transitivity, to (Bn)(n+l) :J (Bn :J (1Bn :J IT)). But we have just 

shown B(n+ l) :J (Bn)(n+l) to be derivable; hence by transitivity, we obtain B(n+ l) :J (Bn :J 

(1 Bn :J I T)). But we have B(n+l) :J Bn, so this reduces to B (n+ l) :J (1Bn :J 1T), from 

which B(n ) :J (Bn 1 :J (1Bn :J 1T)) quickly follows. But by (iii) of Lemma 24: we have 1Bn 

:J Bn+ l; hence, this schema reduces further to the desired 3(n) :J (1Bn :J 1T). 

Lemma 29. In each ROCn+ l (1 ~ n < w), the schema T 0 
:J T (n+l) is derivable. 

Proof: By Lemma 28, in each ROCn+ l(l ~ n < w), we have T(n) :J (1Tn :J 1T). But by the 

Corollary to Lemma 27, we have T(n) = Tn, so this yields Tn :J (1Tn :J 1T). By Lemma 

25, we have 1Tn :J Tn, so this schema reduces to 1Tn :J 1T. Applying RC yields 11T :J 

11Tn. But by Lemma 26, we have 11T = T 0 and 11Tn = Tn+1; hence we have T 0 :J 

Tn+ l. By the Corollary to Lemma 27 again, we have T(n+l) = Tn+1; so this delivers the 

desired T 0 :J T(n+ l). 

Lemma 30. In each ROC , 
1

(1 ~ n < w), the schema T 0 :J (B(n) :J B(n+ l)) is derivable. n, 

Proof: An instance of postulate (12)(n+l) of each ROC , 1(1 ~ n < w) is T(n+l) :J ((1 Bn :J n, 

T) :J ((1Bn :J 1T) :J 11Bn)). By Lemma 29, we have T 0 :J T (n+ l) , so by transitivity, we 

get T 0 :J ( (1Bn :J T) :J ( (1Bn :J 1T) :J 11Bn) ). But 1Bn :J T is obviously derivable, and 

by Lemma 28 we have 3(n) :J (1Bn :J 1T), so this schema simplifies t o T 0 :J (B(n) :J 

11Bn). But by (iv) of Lemma 24, we have 11Bn :J 3n+1, from which (B(n) :J 11Bn) :J 

(B(n) :J B(n+ l)) quickly follows. By transitivity, therefore, we have T 0 :J (B(n) :J 3(n+ l)). 

Lemma 31. In ROC , t he schema B2 :J T 0 is derivable. 
w 

Proof: Evidently , we have both (B & 1B) :J T and B0 
:J T in ROCw. Applying RC to each 

yields 1T :J B0 and 1T :J 1B0
, which can be combined to give 1T :J (B0 & 1B0

). Applying 

RC again yields 1(B0 & 1B0
) :J 11T, which is, by definition B2 :J 11T. By Lemma 26, we 
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have 11T _ T 0
• hence, we have B2 :J T 0

. 

Lemma 32. In each ROCn+ l (2 ~ n < w), the schema B(n) :J B(n+ l) is derivable. 

Proof: By Lemma 30, in each ROCn+l(l ~ n < w) we have T 0 :J (B(n) :J B(n+ l)). But for 2 

~ n < w, we have B(n) :J B2, and therefore B(n) :J T 0 by Lemma 31. Hence, in each 

ROCn+l(2 ~ n < w), the above schema simplifies to the desired B(n) :J B(n+ l)_ 

Theorem 32. For 2 ~ n < w, ROCn == ROC2. 

Proof: Using Lemma 32, it is straightforward to show that postulates (12)(n) to (16)(n) of 

ROC are derivable in ROC +l' for 2 ~ n < w; from this it follows that each such ROC is a n n n 

subsystem of ROCn+ i· But conversely, it follows from Theorem 24 that each ROCn+l is a 

subsystem of ROC ; hence, each ROC == ROC +l' for 2 ~ n < w. Equivalently, each ROC n n n n 

== ROC2, for 2 ~ n < w. 

Thus, there are at most three distinct systems in the ROC-hierarchy: ROC1, ROC2 and 

ROC . Our final result establishes that there are exactly three. w 

Theorem 33. ROCw i= ROC2. 

Proof: The matrices in the proof of Theorem 16, which validate the postulates of RNC and 
w 

therefore also those of ROCw, invalidate postulate (12) (2) of ROC2 when A is assigned the 

value O and B is assigned the value 1. 

14. CONCLUSION 

The conclusion of our investigations m this second half of the chapter is mainly 

negative. All of the systems in the hierarchies obtained by replacing the original base system 

C by, respectively, NC , OC + (12) and OC fail to enjoy SE. Yet the consequences of w w w w 

adding RC in order to secure SE are that: (i) each of the hierarchies of systems incorporating 

RC collapses into just two systems, with the exception of the ROC-hierarchy which comprises 

three distinct systems· and (ii) the strongest member of each such hierarchy either explicitly 

or substantively fails to satisfy condition (I), leaving only the base systems RNCw, ROCw + 

(12) and ROCw, together with ROC 2 as potentially acceptable paraconsistent logics. The 
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second method of variation of the C-systems, then, has so far failed to produce t he desired 

hierarchies of paraconsistent systems analogous to the original Cn(l ~ n ~ w) but enjoying 

E. 

Of course, these results are not conclusive for the second method of variation, for the 

addition of RC is ostensibly more than is required to secure SE; it may be that the hierarchies 

obtained by adding the weaker rule EC would prove to be more satisfactory. On the other 

hand, Theorem 9 of Chapter 5 and Theorem 11 of this chapter warn against too much 

optimism on this score, for they show that results obtained for at least the stronger C-style 

systems incorporating RC can often be extended to those incorporating EC, even though the 

proofs are perhaps more complicated. 

A more radical alternative, perhaps the only course compatible with the retention of 

RC, is to weaken the basis of the C-systems still further. It may be desirable to explore bases 

even weaker than positive intuitionistic logic, such as the (positive) relevant logics developed 

in [1] and in subsequent works, including [18]. (This is the course advocated in [19]). It must 

be recognised, however, that such a course represents a significant departure from the 

approach taken by da Costa and embodied in his paraconsistency condition (II); but then, it 

might also be exactly what is required for the construction of paraconsistent systems which 

enjoy SE, and which, therefore , emulate what is desirable in classical logic rather than merely 

what is classical. 
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